
ELECTRONIQUE APPLICATIONS VISUA

CONDENSATEURS DE COMPENSATION POUR MOTEURS ELECTRIQUES (plastique métallisé aluminium)

Nous mettons à votre disposition une gamme complète, que vous ayez besoin d'un condensateur bobiné à diélectrique polypropylène, polystirène ou polyester ou bien d'un condensateur de compensation auto-cicatrisant pour moteur (résistant aux surtensions transitoires).

Nos condensateurs de compensation sont prévus pour des couplages série ou parallèle avec sorties sur cosses à souder, capuchons, câbles ou connexions type AMP.

Demandez notre documentation complète qui vous sera envoyée gratuitement et sans obligation de votre part.

Votre partenaire pour composants passifs

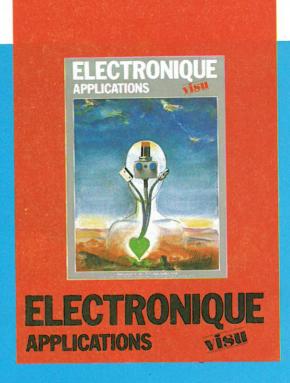
elektronik export-import

DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie

Telefon: 2180 - Telex: 114721 Représentants en France :

Inter composants

51, rue de la Vanne - 92120 Montrouge


Tél.: (1) 655.80.24

Sermès S.A.

14, rue des Frères Eberts

67025 Strasbourg Cédex 14 - B.P. 177

Tél.: (88) 79.99.00

ELECTRONIQUE APPLICATIONS

est une publication bimestrielle de la Société Parisienne d'Edition Société anonyme au capital de 1 950 000 F Siège social : 43, rue de Dunkerque, 75010 Paris

Direction - Rédaction - Administration - Ventes :

2 à 12, rue de Bellevue, 75940 Paris Cedex 19 Tél.: 200.33.05 - Télex: PGV 230472 F

Copyright 1984 - Société Parisienne d'Edition Dépôt légal : Mai 1984 N° éditeur : 1212

Président-Directeur Général,

Directeur de la Publication : Jean-Pierre Ventillard

Rédacteur en chef : Jean-Claude Roussez Coordinateur technique : Jean-Marc Le Roux

Maguette: Michel Raby

Couverture : Gilbert L'Héritier

Ce numéro a été tiré à 53 000 exemplaires

Abonnements:

2 à 12, rue de Bellevue, 75019 Paris.

1 an (6 numéros): 102 F (France) - 137 F (Etranger).

Publicité:

Société Auxiliaire de Publicité - Tél. : 200.33.05 2 à 12, rue de Bellevue, 75940 Paris Cédex 19.

Responsable international de la publicité : Michel Sabbagh

Chef de publicité : Francine Fohrer

« La loi du 11 mars 1957 n'autorisant aux termes des alinéas 2 et 3 de l'article 41, d'une part, que « les copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale, ou partielle, faite sans le consentement de l'auteur ou de ses ayants-droit ou ayants-cause, est illicite » (alinéa 1 de l'article 40).
« Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et suivants du Code pénal. »

du Code penal. » Electronique Applications décline toute responsabilité quant aux opinions formulées dans les articles, celles-ci n'engageant

Distribué par SAEM Transports Presse

Imprimeries Edicis-Evry; S.N.I.L.-Aulnay

ELECTRONIQUEAPPLICATIONS

Répertoire des annonceurs

Formulaire d'abonnement Encart service-lecteurs vente au numéro

SOMMAIRE

VISU

BIMESTRIEL / JUIN-JUILLET 84

2 1/128		Vie professionnelle	14
Analyse		Equipements	
Les systèmes d'acquisition de données	69	Pour la CAO et la FAO : deux nouveaux postes de travail de Scientific Calculations	10
Applications		Micro-informatique	11
Fréquencemètres en circuits intégrés	43	Le « Microscribe », un mini-terminal « de poche » de Terminal Technology	
Intégrateurs et convertisseurs analogique- numérique et leurs applications	49	Compact et puissant : le micro-ordinateurs « PX-8 » Epson	12
		Documentation et catalogues	30
Etude			
La chromatographie en phase gazeuse : principes et applications	53	Composants actifs	126
L'électronique au service de la prospection pétrolière	83	Opto-électronique	132
Micro		Micro-informatique	134
Processeurs graphiques et microprocesseurs : les problèmes d'interface et leurs solutions	31	Equipements	140
Programme de calcul de l'aire algébrique d'une intégrale	95		
Bibliographie	26	REPERTORE DES FARRICANITS	

143

146

147-148

101

ET IMPORTATEURS DE CAPTEURS

NOUVELLES BREVES

Afin de ne pas pénaliser les constructeurs, importateurs et distributeurs qui nous transmettent régulièrement de nombreuses informations, la formule de « nouvelles brèves » que nous présentons ici permettra à nos lecteurs de prendre connaissance, d'un coup d'œil et sans retard, des dernières nouveautés du marché. Pour de plus amples informations, utiliser les cartes de Service-Lecteurs en cerclant les numéros des produits qui vous intéressent. La documentation vous parviendra directement (validité : 3 mois).

Composants actifs

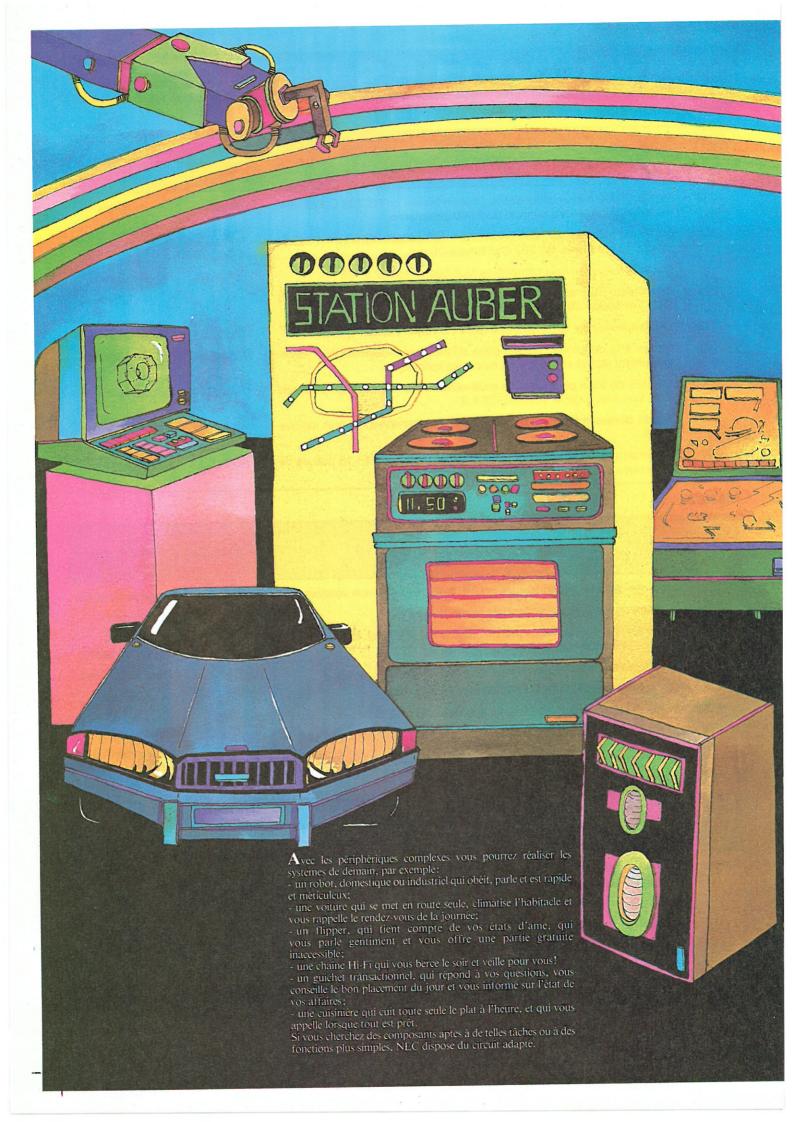
N° code S.L.	Désignation du produit	Référence	Fabricant
075	Processeur Chroma SECAM; circuits VLSI en NMOS; boîtier plastique 40 broches	SPU 2220	ITT Semic.
076	Mémoire RAM dynamique 256 K très rapide	MK 4556	Mostek
077	Mémoire ROM statique 128 K (16 K × 8)	MK 23128	Mostek
078	CPU 16/32 bits à la norme MIL-STD 883 classe B	MKB 68000	Mostek
079	Coprocesseur d'interruptions et port E/S adressable avec parité pour famille 8 X 305	8 X 310 et 8 X 374	RTC
080	Interface 8 bits inverseuse TTL/CMOS	CD 40116	RCA
081	Contrôleurs de RAM 16 à 256 K très rapides en boîtier DIL 48 broches	SN 74 S 408-2 et 409-2	MMI
082	Mémoire FIFO; 5 MHz; faible consommation	67 L 401	MMI
083	Circuit de déflexion TV en boîtier plastique 7 broches	TDA 8170	SGS
084	Ampli Op de puissance à haut rendement	L 465 A	SGS
085	PROM 16 K rapides (45 et 55 ns)	82 S 191 A/B	RTC
086	Circuit son TV (volume et tonalité réglables en courant =)	TDA 8190	SGS
087	DAC 12 bits ultra-rapides en ECL	DAC 63	Burr-Brown
088	Circuit de syntonisation, affichage du numéro de programme et réception de télécommande I.R. pour TV couleur	SAA 1290	ITT Semic.
089	Mémoire RAM 16 K ultra-rapide	MCM 2167 H	Motorola
090	Quadruple ampli BIMOS ; 5 MHz	CA 084	RCA

Produits connexes

N° code S.L.	Désignation du produit	Référence	Fabricant
091	Filtres d'antiparasitage en boîtier métallique	_	Timonta
092	Connecteurs de télécommunications	Scotchlock	3M
093	Connecteurs industriels, 3 à 18 contacts, en boîtiers circulaires plastiques ou métalliques	8 P et 8 PM	Souriau
094	Connecteurs spéciaux pour appareils de télémesure	Série 714	Binder
095	Relais statiques à coupleur optique	Série TOC	Thêta J
096	Capteur de pression différentielle liquide – liquide inductif ; de 100 mbars à 10 bars ; membranes interchangeables	<u>-</u>	FGP Inst.
097	Capteurs de température de précision en circuits intégrés	LM 35	N.S.
098	Connecteurs pour câbles en nappes ; 10 à 50 contacts	RTG 08 C	ITT

NOUVELLES BREVES

Micro-informatique


N° code S.L.	Désignation du produit	Référence	Fabricant
099	Boîtier d'interface multifonctions ; liaison Minitel ou RS 232 C avec une imprimante ; mémoire tampon de 2 000 caractères	Nogetel	Nogema
100	Imprimante à aiguilles ; 200 caract./s. ; 136 caract./ligne (extensible) ; interfaces parallèles, RS 232 C et boucle 20 mA	Radix 15	Star
101	Carte E/S économique compatible Multibus ; RAM 32 à 128 K	MP 8520	Burr-Brown
102	Imprimante à marguerite; 18 caract./s.; interfaces parallèles, RS 232 C et boucle 20 mA; papier jusqu'à 331 mm de large	M 18	Star
103	Démultiplexeur de terminaux IBM 3270 ; 8 voies ; permet le chaînage	CMX 80	Ungermann Bass
104	Cartes à la demande : bibliothèque d'interfaces industriels pour déve- loppement rapide et faible coût de cartes spécifiques	Micro-Flex	Servo-System
105	Kit VME de base pour système multi-utilisateurs, multitâches, en temps réel ; livré avec logiciel VERSADOS 4.3	VME 315	Motorola
106	Sonde désassembleur pour MC 68000; pour analyseur d'état logique IMAS	IMAS B 10	Rohde et Schwartz
107	Imprimante à aiguilles qualité courrier ; matrice 17×24 ; 16 polices de caractères + 128 caractères spéciaux ; 3 interfaces	LQ 1500	Epson

Mesures

N° code S.L.	Désignation du produit	Référence	Fabricant
108	Nouvelle version : générateur VHF/UHF à 40 mémoires non volatiles	SMS 2	Rohde et Schwartz
109	Gamme de nano et picovoltmètres électroniques	_	Tinsley
110	Mesureur de niveau large bande (30 Hz à 120 kHz) en format de poche ; affichage numérique	PM 40	Wandel et Goltermann
111	Amplificateur hyperfréquences 2 à 20 GHz; 100 mW	8349 A	Hewlett-Packard
112	Générateur de fonctions 1 Hz à 200 kHz en 5 gammes	368	Centrad
113	Table traçante format A3; 8 vitesses; résolution 0,1 %	PL 3	J.J. Inst.
114	Milliohmmètre portatif 1 m Ω à 2 M Ω ; précision 2 % ; changement de gamme automatique ; 3 1/2 digits	RAP 1	Française d'Instrumentation

Equipements

N° code S.L.	Désignation du produit	Référence	Fabricant
115	Indicateur de tableau numérique (1 000 points) et analogique (100 segments) en boîtier DIN 36×144	Pr 144 F	Métrix
116	Perforatrices de précision pour films ou calques	ACCUPUNCH	Bishop Graphics
117	Alimentations à découpage ; sorties 5 V/20 A + 5 à 18 V/3 A	DME	Agde
118	Indicateur de tableau à triple affichage (V, A, Hz)	DPMT 96	Pantec
119	Banc de test portable pour câbles plats jusqu'à 60 conducteurs	CC 60	3M
120	Traceur graphique à chargement automatique des feuilles de papier au format A3/B	HP 7550 A	Hewlett-Packard
121	Répondeur intelligent pour diagnostic des réseaux de données (réseau multipoints BSC)	DIR-1	Wandel et Goltermann

INFORMATIQUE

CAO, FAO: deux puissants matériels

« Scicards », « Schemactive » : ces deux nouvelles appellations – apparues aux yeux du marché français lors du Micad 84 – désignent deux systèmes de conception assistée par ordinateur de circuits imprimés, de schémas d'implantation logiques, de « lay out » pour circuits hybrides en couche épaisse.

Le tout, géré par une « station de conception » très complète, regroupant : un terminal et son clavier, une table à dessiner, un écran graphique et des unités mémoire : bande magnétique, disques Winchester, plus une baie d'interface.

Le programme « Scicards »

Il s'agit d'un système interactif – donc permettant au concepteur d'interrompre à volonté toute fonction automatique afin d'ajouter ou de modifier des données – prévu pour des circuits imprimés simples ou multicouches (jusqu'à 20), de surface dépassant 3 m², pouvant comporter en densité 8 000 emplacements de brochage.

Ce matériel permet le placement

automatique des composants, son optimisation en fonction des boîtiers et brochages, et toutes modifications en cours de conception.

La « librairie » du système « Scicards » peut inclure selon les besoins de l'utilisateur tous les renseignements nécessaires à son travail : brochages, règles d'implantation et de dessin, désignation des composants... Le test dynamique effectué par la machine assure en permanence que les règles de conception sont respectées.

Le programme

« Schemactive »

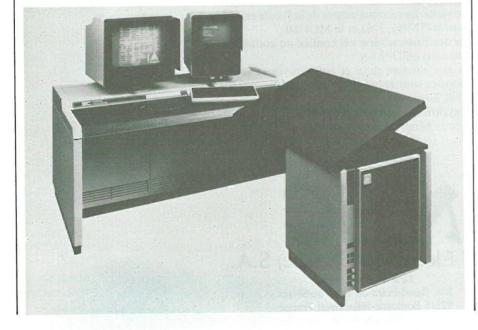
Dans ce système, l'utilisateur spécifie les types de composants, et place, en mode interactif, les symboles schématiques et logiques. Le programme compile les données fournies et délivre une structure électrique de base, exploitable par le système « Scicards ».

Au niveau des symboles mémorisés par la machine afin de simplifier l'opération de dessin, existe une grande souplesse: mise en mémoire de tous les symboles usuels plus certains à usage particulier (brochage de connecteurs, points de test...), mémorisation également des équivalences des composants, possibilité de déplacer tout symbole à tout moment avec conservation des connexions électriques...

Insistons sur la complémentarité et la complète compatibilité des systèmes « Schemactive » et « Scicards » dont la base de données est commune au niveau des spécifications électriques.

Le passage de la conception par « Schemactive » vers l'implantation sur circuit imprimé par « Scicards » s'effectue sans erreurs de translation, aucun transcodage n'étant nécessaire. Durant le positionnement des composants sur le dessin du circuit imprimé, le système vérifie en permanence la concordance entre le dessin du circuit et le « cahier des charges » initial.

La station de conception


La station de conception utilisable pour « Scicards » et « Schemactive » (photo ci-dessous) est mono ou biposte, et constitue un ensemble de bureau fonctionnel. On remarque l'écran alphanumérique et l'écran graphique de dimensions 640 × 512 mm (16 couleurs au choix parmi 32 768 possibles).

La puissance de l'ensemble équivaut à un VAX-11/750, l'exploitation s'effectue sous Unix.

La mémoire comporte un ou deux disques Winchester 70 Mo, et il existe un dérouleur de bande 800/ 1600 bpi.

Fabricant : Scientific Calculations

Distribué par : S.C. France 18, rue Saarinen, Silic 247 94568 Rungis Cedex Tél. : (1) 675.90.45 Tx : 201 313

MICRO-INFORMATIQUE

Un micro-terminal « personnel »

En matière de terminaux informatiques portables, le marché ne cesse d'évoluer, les innovations s'accélèrent, certains produits deviennent démodés alors que d'autres au contraire font leurs preuves. Parallèlement, les besoins en micro-informatique se font de plus en plus précis et les utilisateurs sont plus exigeants. Pour répondre à ces nouvelles attentes, Terminal Technology a développé la gamme Microscribe, distribuée par Ultec; le « Microscribe » est donc un micro-terminal, conçu essentiellement pour un usage professionnel.

Le « Microscribe » : un puissant terminal... « poids plume »

Le « Microscribe » MT 8010 C, compact et portable, est un terminal miniature, alphanumérique à usages multiples. Il comprend :

- un clavier Qwerty, d'utilisation très facile, de 59 touches rondes transmettant 128 caractères ASCII.
- un écran de 2 lignes de 40 caractères chacune.

Sa dimension est celle d'un livre de poche (193 \times 141 mm) et son poids n'excède pas 700 g. Le boîtier incliné du « Microscribe » permet à l'utilisateur un double positionnement : soit sur son bureau, soit à la main.

Le « Microscribe » fonctionne selon trois modes :

- en terminal conversationnel,
- en saisies de données « off-line » et « on-line »,
- en transmission de données.

Une fonction « Texteditor » permet d'utiliser, classer et stocker jusqu'à 8 000 caractères, qu'il sera ensuite possible de traiter.

Le « Microscribe » possède une mémoire de 10 Ko, prochainement extensible à 32 Ko. Il a une autonomie de quatre semaines sans recharge.

Grâce à son équipement conforme aux normes professionnelles, le « Microscribe », connectable par un interface RS 232C, est compatible avec les ordinateurs, les imprimantes et les machines de traitement de textes. Il peut également se connecter à dis-

tance (par le réseau téléphonique) par l'intermédiaire d'un coupleur acoustique ou d'un modem, pour interroger les banques de données ou les systèmes informatiques.

Quelques exemples d'applications


Le « Microscribe » peut répondre aux impératifs des services les plus exigeants. Ses clients potentiels sont : les fabricants ou les utilisateurs d'informatique, l'industrie, le commerce, le secteur médical et le secteur scientifique.

Dans le domaine technique, le « Microscribe » s'adresse :

- aux ingénieurs, pour établir des diagnostics et des contrôles in situ sur des systèmes à microprocesseur,
- aux programmeurs, pour la mise au point et les modifications de programme,
- aux OEM, pour proposer, avec leurs équipements, un terminal conversationnel de faible encombrement à un prix attractif.

Dans le domaine de la bureautiquetélématique, on peut utiliser le « Microscribe » :

- comme terminal de messagerie électronique,
- comme terminal d'accès aux banques de données,
- comme terminal d'interrogation de saisies et de dialogues.

Fabricant :
Terminal Technology
Distribué par :
Ultec
45, boulevard des Bouvets
92000 Nanterre
Tél. : (1) 778.16.12

INFORMATIQUE

Portable et « intelligent » : voici le « PX-8 »

Traditionnellement spécialisée dans les matériels d'informatique professionnelle, la société Epson, distribuée en France par Technology Resources, avait créé, il y a un peu plus d'un an, une petite révolution en présentant un ordinateur portable de format « blocnote » : le HX-20, dont plus de 5 000 unités ont été vendues à ce jour dans le monde.

Le Sicob 1984 est l'occasion d'annoncer l'arrivée sur le marché de son « grand frère » : le « PX-8 », qui se positionne comme un matériel de haut de gamme.

Une capacité de 64 K-octets...

Il s'agit donc d'une machine construite autour du Z 80, et disposant de 64 K-octets de RAM. Là où les choses prennent une dimension nouvelle, c'est quand Epson annonce que cette machine a les dimensions d'un classeur A4, fonctionne sous batterie et sous CP/M, et dispose d'un écran LCD de 8 lignes de 80 caractères, et d'un clavier Azerty accentué.

Réalisé entièrement en technologie C-MOS, le PX-8 a une autonomie de dix heures, grâce à ses batteries rechargeables. Il possède un lecteur de micro-cassettes intégré.

... une bibliothèque de logiciels intégrés

Enfin et surtout, il existe des logiciels intégrés qui peuvent être installés sous forme de PROM résidente dans le PX-8. Deux socles de 32 K-octets sont disponibles, et de nombreux programmes sont proposés sur module PROM.

D'abord un Basic Microsoft, utilisateur CP/M (avec une configuration, des copies capacité et transfert de fichier), un traitement de texte Wordstar, un tableau Calc, une base de données Card Box, et, dans les mois à venir, bien d'autres programmes qui pourront être tirés de la bibliothèque.

Enfin, une imprimante portable peut être ajoutée à l'extérieur du PX-8 pour permettre une trace écrite de l'affichage.

Le PX-8 prolonge le HX-20 dans le haut de gamme, et ne devrait pas entrer en concurrence avec celui-ci qui reste pour les applications économiques la meilleure alternative.

Le prix annoncé par l'importateur se situe vers 8 960 F H.T.

Fabricant: Epson

Distribué par :

Technology Resources 114, rue Marius-Aufan 92300 Levallois-Perret Tél.: (1) 757.31.33

Tx: 610 657

VIE PROFESSIONNELLE

Nouveau distributeur

pour International Rectifier

International Rectifier vient de compléter son réseau de distribution par un accord avec Composants S.A.

Cette société va permettre à International Rectifier de renforcer sa présence commerciale particulièrement dans les régions de Bordeaux, Toulouse, Poitiers, Rennes et Paris.

Composants S.A. dispose dès maintenant d'un stock important des produits courants d'International Rectifier, notamment dans le domaine des semi-conducteurs discrets, à savoir transistors Hexfet, diodes, ponts de diodes, thyristors et relais statiques « Chipswitch ».

Composants S.A.

Avenue G. Eiffel B.P. 81, 33605 Pessac Cedex

Tél.: (56) 36.40.40 Tx: 550 696

ISC France représente

Silicon Systems

I.S.C. France annonce la signature d'un accord de distribution et de représentation exclusive avec la société américaine Silicon Systems Inc.

Silicon Systems a été créée en 1976 dans le but de concevoir et produire des circuits intégrés sur mesure en technologie bipolaire et C.MOS. Cette activité s'est depuis diversifiée dans de nouvelles directions, mais S.S.I. est resté fidèle à une vocation de concepteur et producteur de circuits monolithiques spécifiques :

- circuits de commande de mémoires à disques souples ou durs, floppy ou Winchester:
- en matière de télécommunications, S.S.I. a été le premier à proposer un décodeur DTMF monolithique ;
- les travaux de S.S.I. dans le domaine de la synthèse de la parole ont

débouché sur plusieurs produits extrêmement performants.

S.S.I. rentre donc parfaitement dans le cadre des produits qu'I.S.C. France entend promouvoir: des produits de pointe sans équivalents locaux, dont la non-accessibilité pourrait constituer un handicap pour les industries électroniques françaises.

I.S.C. France

28. rue de la Procession 92150 Suresnes

Tél.: (1) 506.42.75 Tx: 614 596

Almex distribue

la micro-informatique

Hewlett Packard

Almex S.A. vient d'être agréé par Hewlett Packard pour la distribution de ses produits « Informatique Personnelle ». Almex distribuait déià les composants opto-électroniques de Hewlett Packard depuis 1978, et la microinformatique constitue une suite logique, tant pour Almex dont le département Systèmes est ainsi doté d'une carte très complémentaire des produits déià distribués, que pour Hewlett Packard dont on connaît la prudence quant au choix de ses partenaires.

Dans l'immédiat, Almex va concentrer ses efforts sur le nouvel ordinateur personnel HP150. Outre l'écran tactile qui se révèle être un interface hommemachine d'un confort d'utilisation tout à fait remarquable, le HP150 travaille sous MS/DOS (compatibilité IBM-PC), est fabriqué en France (à Grenoble), dispose dès sa sortie de toute une gamme de progiciels, et enfin parle français.. ce qui n'est pas le moindre de ses avantages.

Toutefois, le contrat de distribution conclu par Almex porte également sur les produits suivants :

série 80: HP85B, HP86B,

- série 200 : HP9816,

- périphériques : disquettes 3 1/2", 5 1/2", disques Winchester 5, 10 ou | Tx: 695 635

15 Mo, imprimantes, tables tracantes, table à digitaliser, etc.

Quant à la maintenance, Hewlett Packard, fidèle à sa politique, en garde la maîtrise. Deux formules de contrat forfaitaire sont proposées, soit en centre de réparation, soit sur site. L'une et l'autre apportent à l'utilisateur une garantie de délai d'intervention et une sécurité technique complète.

48, rue de l'Aubépine Zone Industrielle, 92160 Antony

Tél.: (1) 666.21.12 Tx: 250 067

Nouvelle carte pour CP-Electronique

CP-Electronique vient d'acquérir une nouvelle carte de représentation, la société américaine Micropac située au Texas.

Les produits de Micropac viennent enrichir et compléter les gammes des produits de CP-Electronique, principalement dans le domaine de l'optoélectronique, de la puissance et des hyperfréquences ; cette dernière ligne de produits représentant un nouveau créneau pour CP.

L'originalité de Micropac est de pouvoir offrir des produits catalogue originaux ou en seconde source, ou bien de réaliser des circuits à la demande, en hybride couche mince ou épaisse.

En outre, Micropac met particulièrement l'accent sur la haute fiabilité de ses produits dont la plupart ont subi des tests sévères et sont homologués selon les normes MIL. Par exemple, les produits de puissance sont des régulateurs de tension pouvant délivrer des courants de 1 à 15 A, dans des environnements sévères comme c'est souvent le cas des applications spatiales et militaires.

CP - Electronique

BP nº 1, 78420 Carrières-sur-Seine

Tél.: (3) 947.41.40

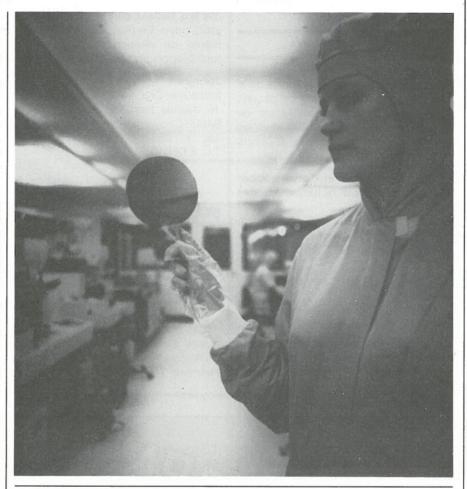
VIE PROFESSIONNELLE

ITT-Semiconducteurs:

nouvelle unité

de traitement du silicium

Après une durée de construction de onze mois seulement, le groupe ITT-Semiconducteurs a procédé au démarrage de sa nouvelle unité de fabrication de circuits intégrés (« wafer fab »), chez Intermetall à Freiburg.


Ce nouveau centre technologique qui a coûté près de 200 millions de francs est unique en Europe : la capacité de production des plaques 5 pouces (125 mm) est de 150 000 unités/an, pour une superficie de salles blanches de 1 000 m². Les filières utilisés sont le H.MOS et le C.MOS. Les équipements sont les plus avancés de ce qui est actuellement disponible au niveau technologique.

ITT prévoit des géométries de 1,5 μ m fin 1984 et 1 μ m vers 1985-

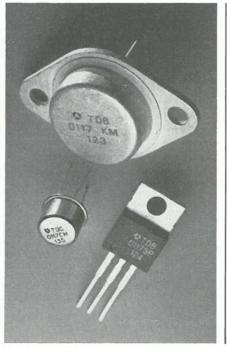
ITT Composants et Instruments **Division Semiconducteurs** Intermetall

157, rue des Blains 92220 Bagneux Tél.: (1) 547.81.81

Tx: 260 712

Maintenant, des « wafers » 5 pouces chez ITT.

Une division


« militaire et spatial »

à Thomson Semiconducteurs

Pour répondre aux besoins du marché en semiconducteurs discrets et intégrés, Thomson Semiconducteurs vient de créer une division « Militaire et Spatial » dont la direction a été confiée à M. René Besamat.

Implantée à Saint-Egrève, près de Grenoble, cette division sera chargée :

- de la stratégie de l'ensemble des semiconducteurs discrets et intégrés à usages militaires ou spatiaux produits par Thomson Semiconducteurs,

- de la mise en œuvre industrielle de ces composants,
- de l'ensemble des études relevant du domaine militaire et spatial.

Elle disposera évidemment, autour de ses moyens propres, des moyens et compétences de l'ensemble de Thomson Semiconducteurs: études avancées, ateliers prototypes, centre de conception et de fabrication.

René Besamat, qui vient de prendre la direction de cette Division, est âgé de 49 ans, il est entré dans le groupe Thomson en 1954. Il occupait précédemment les fonctions de Directeur des études et programmes de Thomson Semiconducteurs.

Groupe Thomson

173, boulevard Haussmann 75379 Paris Cedex 08

Tél.: (1) 561.96.00 Tx: 204 780

VIE PROFESSIONNELLE

Jermyn représente

Textool-3M

La société **Jermyn**, spécialisée dans la fabrication de supports de circuits intégrés et la commercialisation de composants actifs et passifs, vient de prendre la distribution des supports **Textool-3M**.

Elle s'ajoute ainsi aux quatre sociétés qui distribuent actuellement ces produits, à savoir :

- B.F.I. Electronique, 9, rue Yvart, 75015 Paris
- DIMEL, avenue Claude-Farrère, 83100 Toulon.
- IDEM, 78, chemin Lanusse, 31200 Toulouse.
- Radio Sell Composants, 156-161, rue Jean-Jaurès, 29000 Brest.

La gamme **Textool-3M** comprend des supports de circuits intégrés, de « chip-carriers », de transistors... destinés aux tests, « burn-in » ou utilisés en production. De plus, **Textool-3M** est à même de développer sur demande tout support particulier.

Jermyn

Immeuble Orix 16, avenue Jean-Jaurès 94600 Choisy-le-Roi Tél.: (1) 853.12.00 Tx: 213 810

Siemens comercialise

les tubes Heimann

La commercialisation des tubes éclairs électroniques dits tubes flash ou encore tubes à éclats de la société Heimann (Groupe **Siemens**), assurée

jusqu'à présent sur toute la France par la société Cunow, a été reprise par Siemens S.A., Division Composants Spéciaux.

Ces tubes sont destinés à des applications en photographie, pour la sécurité routière, l'industrie, la publicité, la stroboscopie, la colorimétrie, l'excitation laser et l'endoscopie.

Rappelons que les tubes de prises de vues, les détecteurs IR pyroélectriques et les photorésistances **Heimann** sont commercialisés en France par **Siemens** depuis plusieurs années.

Siemens

39-47, boulevard Ornano 93200 Saint-Denis

Tél.: (1) 820.61.20 Tx: 620 853

Résines Liquides HYSOL

Venez nous voir, vous découvrirez une famille issue d'une grande lignée: DEXTER.

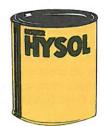
Nous sommes la plus ancienne société cotée à la bourse de New York. Aujourd 'hui notre chiffre d'affaires atteint plus de 500 millions de \$ US avec cinq divisions ayant toutes un seul objectif: la haute technologie. Parmi celles-ci, HYSOL, famille de haute tradition.

Depuis 30 ans, notre préoccupation principale est la formulation de résines spécialisées pour l'enrobage ou le remplissage.

Ces produits sont fabriqués non seulement aux Etats-Unis, Canada, Mexique et Japon, mais également dans notre usine de Munich en R.F.A. qui couvre les besoins de la France, les autres marchés européens, l'Afrique, le Moyen-Orient et une partie de l'Asie.

Comme vous pouvez le constater, nous sommes très proches de vous. C'est pourquoi, nous pouvons vous rencontrer facilement.

Laissez-nous, d'ores et déjà, vous présenter les principaux membres de notre famille.


Voici, tout d'abord, nos résines époxy liquides à 1 ou 2 composants, polymérisant à chaud ou à température ambiante, puis nos résines époxy liquides pour l'encapsulation de

semi-conducteurs, nos résines pour l'opto-électronique et, enfin, nos résines liquides polyuréthanes, nos réserves et vernis pour circuits imprimés et nos colles conductrices spéciales.

speciales.

Nous sommes également très soucieux de nous maintenir à l'avantgarde de la technolgie électronique grâce à nos efforts constants dans le domaine de la recherche et du développement. De plus, nous pouvons formuler, pour vous, des produits "sur mesure".

Vous êtes les bienvenus!

HYSOL

69, Rue des Rigoles F-75020 Paris FRANCE Téléphone: (1) 3664705 Télex: 220654 buschke marketing, münche

BIBLIOGRAPHIE

Les capteurs

en instrumentation

industrielle

par Georges Asch et Coll.

La mesure joue un rôle de plus en plus fondamental dans le développement des activités industrielles et, à sa base, le capteur prend une importance croissante, car lui seul permet de prolonger et d'affiner les sens de l'homme.

Les capteurs, délivrant une information sous la forme d'un signe électrique, permettent de traduire une grandeur physique et ses variations : température, déplacement, flux lumineux, humidité, pression, force, couple, débit, vitesse, etc.

Pas de processus industriel correct sans l'aide de multiples capteurs qui fournissent les informations à contrôler et à traiter pour assurer la sécurité de fonctionnement et la qualité des fabrications, et dont le choix est une étape fondamentale dans la réalisation d'une chaîne de mesure ou d'un automatisme industriel.

Georges Asch s'est entouré d'une équipe de spécialistes pour réaliser le présent traité rassemblant, de façon claire et didactique, l'ensemble des données qui décident du choix d'un capteur adapté à un problème donné et président à sa mise en œuvre.

Après un exposé général, sont recensés, pour chaque type de grandeur physique à mesurer, les divers capteurs utilisables et actuellement disponibles sur le marché. Pour chacun d'eux, sont développés : les principes physiques sur lesquels il se fonde : le mode de réalisation ; les caractéristiques métrologiques (sensibilité, linéarité, rapidité, fidélité, précision) : les caractéristiques de mise en œuvre; les conditionneurs, c'est-àdire les montages électriques directement associés au capteur afin de tirer le meilleur profit de ses caractéristiques (ponts, amplificateurs, convertisseurs, etc.).

Résultat d'un énorme travail de documentation et de recherche, cet ouvrage est un véritable manuel qui sera utile aussi bien aux étudiants (technologie, instrumentation, électronique, automatique, physique, sciences biomédicales) et aux élèves des écoles d'ingénieurs et des centres de formation continue, qu'à tous les techniciens, ingénieurs et chercheurs confrontés à un problème de mesure.

Dunod, 17, rue R.-Dumoncel, 75014 Paris.

Dictionnaire

de la micro-informatique

L'informatique est encore toute jeune ; sa « Préhistoire » ne remonte quère qu'à quarante ans.

Mais en quelques années, l'ordinateur a fait une percée fulgurante, au point d'être, aujourd'hui entré dans notre vie quotidienne.

Cette situation crée un immense besoin d'information et de connaissance, spécialement au niveau de la terminologie.

C'est dans ce cadre que s'inscrit le dictionnaire de la micro-informatique.

Il comporte:

- 800 termes avec leur définition et leur équivalent en anglais,
- un index permuté français/anglais, anglais/français,
- tous les mots nouveaux dans ce domaine.

Il représente un outil indispensable aux spécialistes, aux chercheurs, aux traducteurs, aux étudiants et à tous les utilisateurs de l'informatique.

Librairie Fernand Nathan, 9, rue Méchain, 75676 Paris Cédex 14

Enseignement assisté

par ordinateur:

traitement numérique

des signaux

par M. Kunt

Une maîtrise, même parfaite, d'une théorie ne permet pas de l'appliquer avec aisance. Cet ensemble de programmes, unique dans son genre, a été conçu pour permettre à l'utilisateur de mettre en œuvre les méthodes de traitement numérique des signaux, avec l'assistance d'un ordinateur.

Un dialogue constant avec l'exécution des programmes permet de choisir un traitement particulier dans des menus variés, de modifier des paramètres, d'étudier et de visualiser leurs effets. Les programmes sont écrits en Fortran standard. Ils sont interactifs et modulaires. L'utilisateur peut les modifier et/ou les élargir par la suite. Ils sont fournis sur une bande magnétique avec la documentation et la procédure d'installation.

Presses Polytechniques Romandes, Cité universitaire, Centre Midi, CH-1015 Lausanne (Suisse)

Lexique des fibres optiques

A l'heure où la France choisit de développer cette technique de pointe pour laquelle elle fait office de précurseur, cette première partie d'un dictionnaire multilingue de l'optoélectronique s'imposait face à l'influence de la langue anglaise dans ce domaine.

Il comprend:

- 750 termes avec leur équivalent anglais,
- tous les mots français nouveaux dans ce domaine,
- des illustrations pour mieux connaître tous les types de fibres existants.

Librairie Fernand Nathan, 9, rue Méchain, 75676 Paris Cedex 14

Annuaire 1984

du F.G.M.E.E.

La F.G.M.E.E., Fédération Nationale des Syndicats de Grossistes Distributeurs en Matériel Electrique et Electronique, vient de publier son annuaire 1984.

Il regroupe tout d'abord l'ensemble des adhérents par ordre alphabétique en donnant une indication sur leur type d'activité et en citant toutes leurs agences.

En plus de ce répertoire national, chacun des 13 syndicats régionaux dispose d'un chapitre particulier où le lecteur peut retrouver l'implantation locale des divers adhérents.

Un chapitre complet est consacré au S.P.D.E.I., Syndicat Professionnel de la Distribution en Electronique Industrielle. Celui-ci est toutefois moins complet que l'annuaire spécialisé, disponible lui aussi à la F.G.M.E.E.

Enfin, le SIGREM, Syndicat National Interprofessionnel des Grossistes Distributeurs en Matériel Electroménager et en Electronique Grand Public, voit l'ensemble de ses membres regroupés dans la section verte avec ici aussi une indication sur leur activité par produits.

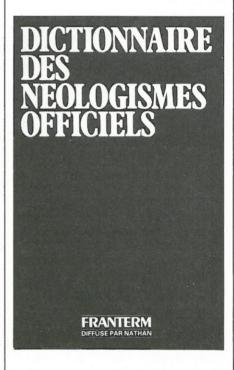
Cet ouvrage de 284 pages est disponible sur demande à la F.G.M.E.E., 13, rue Marivaux, 75002 Paris.

Calcul différentiel et intégral

par J. Douchet et B. Zwahlen

Cet ouvrage de base a pour but d'exposer aussi simplement que possible, mais néanmoins de manière rigoureuse, les principaux résultats du calcul différentiel et intégral qu'il est indispensable de connaître au sujet des fonctions réelles d'une variable réelle si l'on veut être capable d'entreprendre de façon constructive des études techniques ou scientifiques. Les différents sujets traités sont : un rappel des résultats analytiques des nombres réels, les suites de nombres réels, les séries numériques, la limite d'une fonction, les fonctions continues, la dérivée d'une fonction. les théorèmes de Rolle et des accroissements finis et leurs applications, la règle de Bernoulli-L'Hospital, le développement limité, la formule de Taylor, les fonctions convexes, l'étude et les propriétés des fonctions exponentielles, logarithme, puissance et hyperboliques, l'intégrale d'une fonction continue et ses propriétés, les intégrales généralisées, les équations différentielles linéaires et non linéaires de premier ordre, les équations différentielles linéaires du second ordre.

Pour que le lecteur puisse, par luimême et à tout moment, vérifier s'il a bien assimilé les principaux résultats démontrés dans cet ouvrage, de nombreux exercices sont proposés à la fin de chaque chapitre.


Presses Polytechniques Romandes, Cité Universitaire, Centre Midi CH-1015 Lausanne (Suisse).

Dictionnaire

des néologismes officiels

Le Dictionnaire des néologismes officiels n'est pas, comme d'autres dictionnaires de mots nouveaux, fondé sur la simple constatation de l'usage.

Il comporte l'ensemble des termes arrêtés par les Commissions Ministérielles de Terminologie, termes créés de toutes pièces ou termes existants auxquels sont donnés des sens nouveaux.

Présenté pour la première fois sous forme de dictionnaire, l'ensemble de ces mots et expressions avec leurs définitions et leurs équivalents en anglais constitue :

- un guide pour connaître le français d'aujourd'hui,
- un outil de travail pour tous ceux qui ont à connaître les termes dont l'emploi est réglementé (avocats, juristes, publicitaires, chercheurs, interprètes, étudiants).

Vivant, il sera constamment enrichi et remis à jour avec l'aide et l'apport d'une trentaine de groupes de travail.

Librairie Fernand Nathan, 9, rue Méchain, 75676 Paris Cedex 14.

Ouvrages de la collection

« Micro-EO »

L'objectif de la nouvelle collection « Micro-EO » est d'apporter aux lecteurs les moyens d'intégrer la micro-informatique dans leur pratique professionnelle.

Les ouvrages de la collection s'adressent aux cadres, ingénieurs et professions libérales : ils montrent comment constituer et faire fructifier un capital informatique, si modeste soit-il au départ.

Face au déferlement d'une production éditoriale centrée sur des matériels spécifiques, les Editions d'Organisation ont choisi de publier une série de livres très concrets. Axé sur un domaine d'application particulier, chaque livre contient de nombreux exemples de programmes et donne l'essentiel sur les bases de données et les fichiers nécessaires.

Parmi les nouveaux ouvrages de cette collection, deux se montrent particulièrement intéressants : « Réussir en affaire, avec votre micro-ordinateur » et « Programmez vos graphiques sur micro-ordinateur. »

Réussir en affaires avec votre micro-ordinateur

par B. K. Pannell, D. C. Jackson et S.B. Lucas

Les progrès récents de la microinformatique ont abouti à une baisse très sensible des coûts du matériel : il est aujourd'hui possible d'envisager l'installation d'un micro au niveau d'un service, ou d'une petite PME.

Ce livre, qui vient d'être adopté comme support pédagogique de formation permanente en Grande Bretagne, s'adresse à tous les cadres et dirigeants envisageant l'informatisation de certaines fonctions ou de certaines parties de leurs tâches quotidiennes.

A l'aide de cas concrets, de listes de contrôle, les auteurs de ce petit livre illustré permettront de n'oublier aucune question préalable essentielle pour réussir l'informatisation sur micro-ordinateur, quel que soit le matériel choisi.

Programmez vos graphiques sur micro-ordinateur

par G. Marshall

La création et la visualisation de graphiques au moyen d'un micro-ordinateur apportent un gain de temps et de précision à l'utilisateur.

Ce livre expose les principales méthodes de production de graphiques sur micro-ordinateur. Après une présentation du contexte graphique et des principes de base, trois chapitres sont consacrés aux graphiques par blocs, par pixels, et par lignes, suivis à chaque fois d'un résumé et d'exercices de programmation. Le dernier chapitre s'intéresse à la couleur, au mouvement et au dessin en trois dimensions. Enfin, une annexe récapitule les possibilités graphiques de divers micros.

Parfaitement accessible à l'utilisateur non mathématicien, ce livre n'est lié à aucun matériel particulier. Il présente donc un grand intérêt pour tous les utilisateurs de micro-ordinateurs attirés par les graphiques, dans le domaine pédagogique ou professionnel.

Parmi les ouvrages que comporte cette collection très complète, citons également :

- le dossier de la micro-informatique,
- la bureautique: outils et applications,
- pico-informatique et gestion d'entreprise,
- les enjeux clés de la bureautique,

ainsi que d'autres livres orientés plus spécifiquement vers les PME et l'informatique de gestion.

Editions d'Organisation, 5, rue Rousselet, 75007 Paris.

Achats sur place:

Librairies des Entreprises 7, rue de la Bourse, 75002 Paris 197, bd de la Liberté, 59000 Lille GESA-CFC

1, rue de la Libération, 78350 Jouy-en-Josas.

Formation pratique

à l'électronique moderne

par M. Archambault

Peu de théorie et beaucoup de pratique dans cet ouvrage : une méthode d'apprentissage que les amateurs apprécieront. Faisant appel à votre raisonnement, l'auteur vous guide dans l'utilisation des composants modernes pour réaliser vos montages. Chaque sujet est illustré de conseils pratiques, de formules, de références, d'indications de brochage, qui vous permettront de concevoir vos propres schémas.

STSF M. ARCHAMBAULT

FORMATION PRATIQUE à l'électronique MODERNE

Editions Techniques et Scientifiques Françaises

Les principaux chapitres sont les suivants :

- Rappel sur les lois électriques.
- Transistors, diodes, condensateurs.
- Composants passifs et actifs.
- Composants d'entrées et de sorties
- La conception des alimentations.
- L'amplificateur opérationnel.
- L'optoélectronique.
- Les relais.
- Les portes logiques.
- Les C.I. logiques spéciaux.
- Les signaux périodiques.

En vente par correspondance à la Librairie Parisienne de la Radio, 43, rue de Dunkerque, 75010 Paris.

DOCUMENTATION

« Power Control Devices »

1984 de TAG

Tag Semiconductors a réuni, en plus de 200 pages, une importante documentation sur ses produits de types thyristors et triacs.

L'essentiel du catalogue est bien sûr consacré au répertoire des différents modèles de composants en leurs différents boîtiers: TO 39, TO 92, TO 202 et TO 220.

Mais d'autres sections de l'ouvrage se veulent plus précisément une vocation de guide technique, traitant par exemple des circuits de limitation en dV/dt à la commutation, ou encore de la façon de monter les triacs et des problèmes de dissipateurs thermiques.

Un important chapitre concerne également les procédures de test et de fiabilisation des produits *TAG*.

TAG Semiconductors

Z.A. de Courtabœuf, B.P. 136 91944 Les Ulis Cedex

Tél.: (6) 907.02.16 Tx: 692 650

Manuel

« photomultiplicateurs » RTC

RTC La Radiotechnique-Compelec a édité un manuel de 490 pages, entièrement consacré aux tubes photomultiplicateurs et à leurs principales applications.

Les auteurs se sont attachés à décrire le fonctionnement théorique de ces tubes sans pour autant négliger l'aspect pratique de leur utilisation.

Sept grands chapitres composent cet ouvrage, avec une bibliographie par chapitre et un index général. Ce sont les suivants:

- Constitution d'un photomultiplica-
- Caractéristiques fondamentales (sensibilité, gain, courant d'obscurité, rapidité, résolution).

- Fluctuations statistiques : le bruit.
- Autres caractéristiques (linéarité, stabilité, post-impulsions...).
- Mise en œuvre (pont diviseur, domaine de fonctionnement, compensation des dérives, etc.).
- Applications (comptage de scintillations, photométrie).
- Rappels (photométrie, effets des rayonnements sur la matière, les scintillateurs).

RTC

130, avenue Ledru-Rollin 75540 Paris Cedex 11

Tél.: (1) 338.80.00 Tx: 680 495

Nouveau catalogue Orbitec

La société *Orbitec* annonce la parution de son nouveau catalogue composants 1984, regroupant l'ensemble des produits commercialisés par cette société.

Composé de quatre grands chapitres — signalisation, commutation, relais et enfin connectique et accessoires divers —, ce document de 135 pages présente :

- les diodes et afficheurs LED, les afficheurs et matrices LCD avec ou sans logique, et les voyants lumineux;
- les claviers, les boutons-poussoir,
 les interrupteurs et les commutateurs
 à clefs et rotatifs ;
- les relais de puissance et de type européen, Reed et « télérupteur » ;
- les supports de circuits intégrés, les connecteurs XLR, BNC, UHF et péritélévision, les borniers pour circuits intégrés, les prises et fiches de type CEE, les coffrets, les alimentations et convertisseurs, les porte-fusibles et fusibles...

Ce catalogue est disponible sur simple demande chez *Orbitec*.

Orbitec

30-32, rue Calmels Prolongée 75018 Paris

Tél.: 258.15.10 Tx: 641 356

Catalogue Locamesure

En 48 pages, 67 marques, plus de 650 références et 110 nouveautés, *Locamesure* propose dans son catalogue 1984 l'éventail le plus large d'équipements électroniques professionnels et de systèmes informatiques disponibles en location courte durée (1 semaine à 1, 3 ou 6 mois).

LOCAMESURE

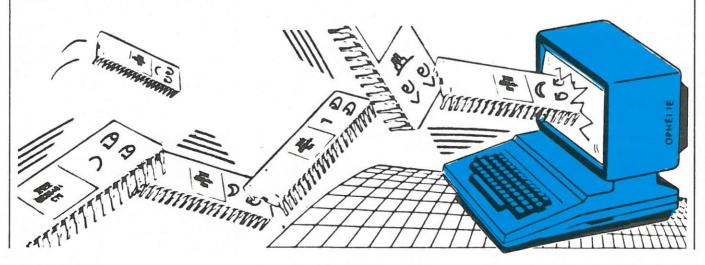
Grâce à l'index des fabricants, au répertoire très détaillé de tous les types de matériels retenus et à une brève description de leurs principales caractéristiques, le lecteur peut rapidement trouver la solution à son problème, qu'il doive recourir à un équipement de moyenne, haute ou très haute gamme. La volonté de *Locamesure* étant, en effet, d'apporter la meilleure réponse technique et économique à un maximum d'applications en proposant des familles de produits étoffées, du matériel le plus simple au plus sophistiqué.

Le catalogue 1984 de Locamesure – véritable encyclopédie méthodique de l'appareillage électronique – se divise en cinq grands chapitres correspondant aux divisions actuelles de la société : instrumentation d'usage général ; analyse numérique ; micro-ordinateurs, calculateurs et périphériques ; systèmes de développement ; télécommunications.

Locamesure

8, rue de l'Estérel, Silic 456 94593 Rungis Cedex Tél. : (1) 687.33.38

Tx: 202 145



Processeurs graphiques et microprocesseurs : les problèmes d'interfaces et leurs solutions

Nous avons déjà évoqué (« Electronique Applications » n° 19, p. 27) ce nouveau concept de circuit intégré qu'est le processeur graphique, qui permet de gérer un écran d'affichage à haute définition de type CRT.

Ces processeurs graphiques ont, depuis, connu le développement que l'on sait, tant dans le domaine professionnel que grand public, au niveau des terminaux de visualisation.

Pionnier dans ce domaine, Thomson Semiconducteurs présente maintenant trois types de processeurs, les EF 9365, 9366, 9367, prévus pour s'interfacer directement avec les microprocesseurs de la marque. D'autres types de « micros » peuvent cependant s'interfacer avec ces processeurs graphiques au moyen de quelques règles simples : c'est l'objet de cet article.

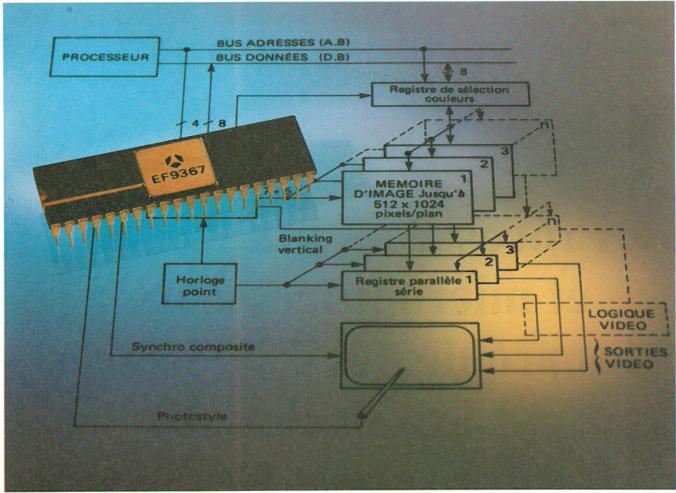


Photo 1. – Le EF 9367 est le dernier-né des processeurs graphiques Thomson-Semiconducteurs.

Principes de base

Les processeurs graphiques EF 9365, EF 9366, EF 9367 sont conçus pour être utilisés directement avec les microprocesseurs de la famille EF 6800, EF 6809 (*).

Cependant l'utilisateur d'autres types de microprocesseurs peut de manière simple réaliser un interface pour son application propre. Cet article explique comment implémenter de tels interfaces pour les microprocesseurs suivants: Z80 A, 8085 A, 6502 et 2650 A1.

D'autres montages pourront être développés pour chaque autre cas, en suivant le principe utilisé ici.

Voyons tout d'abord la question des signaux de bus des processeurs graphiques. Les spécifications tempo-

Tableau 1

PARAMETRE	SYMBOLE	MIN. (ns)	MAX. (ns)
Largeur d'impulsion, E bas	t _{EL}	450	
Largeur d'impulsion, E haut	t _{EH}	430	
Pré-établissement adresses et R/W	t _{AS}	160	
Maintien adresses et R/W	t _{AH}	10	
Pré-établissement données	t _{DSW}	260	
Temps d'accès en lecture	t _{DDR}		320
Temps de maintien données	t _{DHR}	10	

Suite du texte en p. 38

relles sont celles de la figure 1 et du tableau 1.

Dans tous les cas, il conviendra de créer des signaux respectant ces spécifications à partir des signaux de bus fournis par le processeur. Les signaux à observer sont donc : \overline{E} , R/\overline{W} , $A_0...$ A_3 , $D_0...$ D_7 .

Interface au microprocesseur Z80 A

Les spécifications temporelles du Z80 A sont, dans le cas d'un accès périphérique, celles de la figure 2 et du tableau 2.

^(*) De nombreuses notes d'applications ont été éditées chez Thomson-Semiconducteurs sur ce sujet.

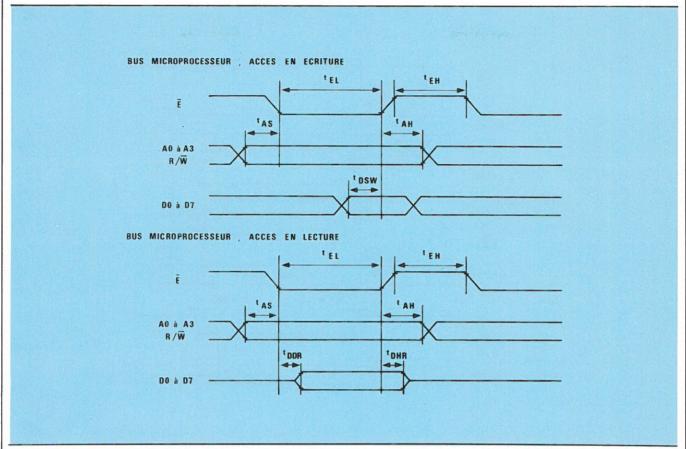


Fig. 1. – Spécifications temporelles des signaux des processeurs graphiques.

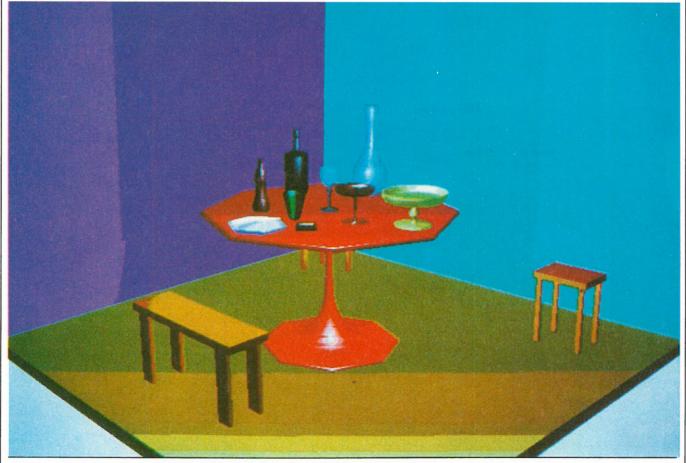


Photo 2. – Image obtenue sur écran, à l'aide du « Radiance 320 » GIXI, utilisant le EF 9367.

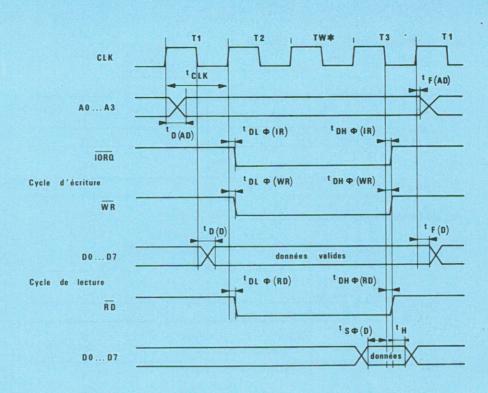


Fig. 2. – Spécifications temporelles du Z-80 A.

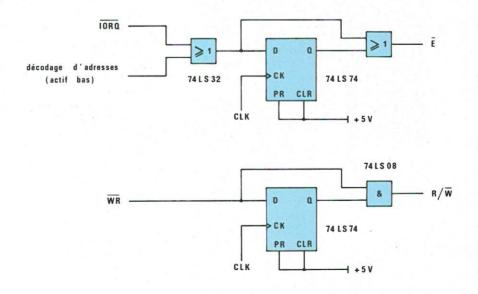


Fig. 3. – Premier schéma d'interface avec le Z-80 A.

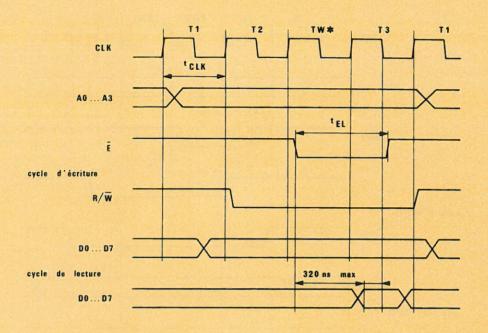


Fig. 4. - Signaux obtenus avec le premier interface au Z-80 A.

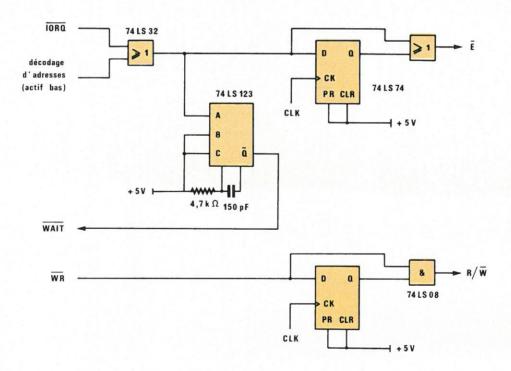


Fig. 5. - Second schéma d'interface avec le Z-80 A.

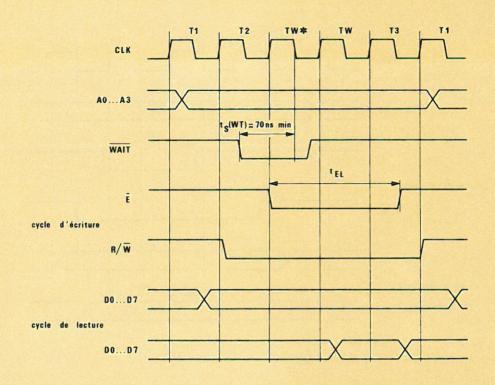


Fig. 6. - Signaux correspondant au schéma de la figure 5.

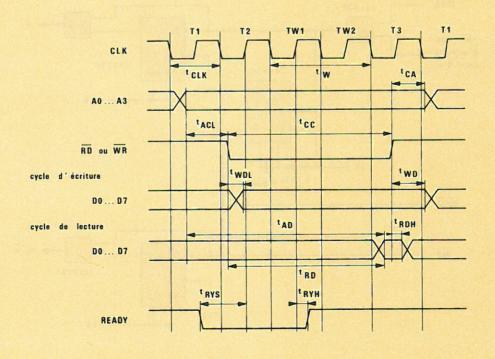


Fig. 7. - Spécifications temporelles du 8085-A.

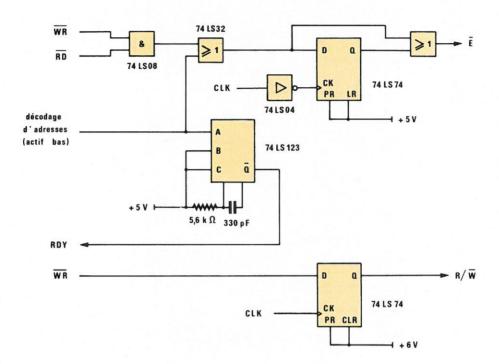
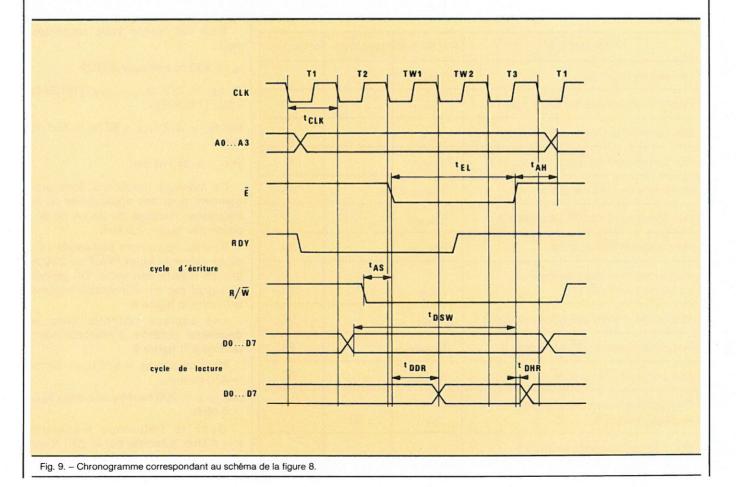



Fig. 8. – Interface proposé pour le 8085-A.

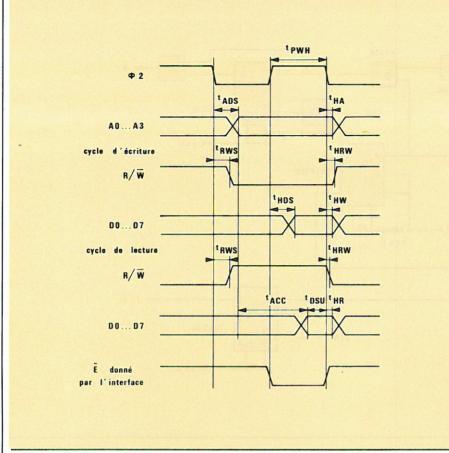


Fig. 10. - Spécifications temporelles du 6502

Tableau 2

PARAMETRE	SYMBOLE	MIN. (ns)	MAX. (ns)
Période de l'horloge	tolk	250	
Positionnement des adresses après Φ	t _{D(AD)}		110
Mise en trois états des adresses après Φ	t _{F(AD)}		90
Positionnement de IORQ bas après Φ	t _{DLΦ(IR)}		75
Remontée de IORQ après Φ	t _{DHΦ(IR)}		85
Positionnement de WR bas après Φ	t _{DLΦ(WR)}		65
Remontée de WR après	t _{DHΦ(WR)}		80
Positionnement des données en écriture après $\overline{\Phi}$	t _{D(D)}		150
Mise en trois états des adresses après Φ	t _{F(D)}		90
Positionnement de RD bas après Φ	t _{DLΦ(RD)}		85
Remontée de RD après Φ	t _{DHΦ(RD)}		85
Prépositionnement des données en lecture avant Φ	t _{SΦ(D)}	60	
Maintien des données en lecture après IORQ haut	t _H	0	

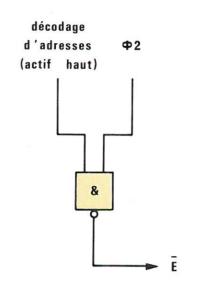


Fig. 11. - Interface proposé pour le 6502.

Un premier schéma peut être proposé (fig. 3) dans lequel :

- E descend sur le front montant de CLK suivant la descente de IORQ et remonte en même temps que IORQ.
- R/W descend quand WR descend et remonte sur le front montant de CLK suivant la remontée de WR (fig. 4).

Tous les temps sont respectés sauf :

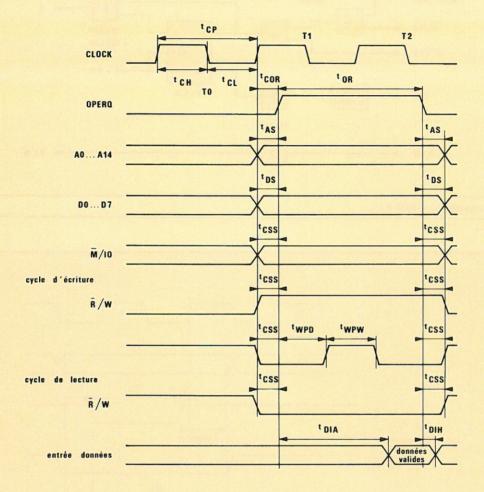
 $t_{EL} = 450$ ns min pour le GDP

et $t_{EL} = 3/2 t_{CLK} - t_{PHL} (74LS74) - t_{PHL} (74LS32)$

soit $t_{EL} = 3/2 t_{CLK} - 62 ns = 450 ns$ min.,

et $t_{CLK} = 340$ ns min.

Ce montage fonctionne donc uniquement pour des applications où la fréquence d'horloge du Z80 A ne dépasse pas $f_{MAX}=2,9~MHz.$


Pour les fréquences <u>plus</u> élevées on devra utiliser le signal <u>WAIT</u> du Z80 A afin de ralentir son cycle. On génère ce signal par un monostable comme le montre la **figure 5**.

Les signaux obtenus avec le deuxième schéma d'interface sont donnés à la figure 6.

Dans ce cas, $t_{EL} = 5/2 t_{CLK} - 62 \text{ ns}$ = 450 ns min.,

soit $t_{CLK} = 200$ ns min, soit enfin $f_{MAX} = 5$ MHz.

Donc la fréquence maximum f = 4 MHz autorisée par le Z80 A est largement tenue; en effet, avec $t_{CLK} = 250 \text{ ns}$, $t_{EL} = 560 \text{ ns}$ min.

PARAMETRE	SYMBOLE	MIN. (ns)	MAX. (ns)
Période de l'horloge	tolk	320	
Positionnement RD ou WR après A ₀ -A ₃	tack	240	
Largeur d'impulsion RD ou WR bas	tcc	400*	
Maintien des adresses après remontée de RD ou WR	t _{CA}	120	
Positionnement des données en écriture après WR bas	t _{WDL}		40
Maintien des données en écriture après WR haut	two	100	
Temps d'accès des données en lecture après A ₀ -A ₃	t _{AD}		575*
Temps de maintien des données après RD haut	t _{RDH}	0	
Temps d'accès des données en lecture après RD bas	t _{RD}		300*
Prépositionnement de RDY avant montée de CLK	t _{RYS}	110	
Maintien de RDY après montée de CLK	t _{RYH}	0	

Fig. 12. – Spécifications temporelles du 2650 A1.

Tableau 3 (ci-contre)

Interface au microprocesseur 8085 A

Compte tenu des spécifications temporelles du 8085 A lorsqu'il fonctionne avec une période d'horloge t_{CLK} = 320 ns, il est nécessaire de ralentir les cycles d'écriture et de lecture du GDP de deux périodes d'attente $(t_W = 2 \cdot t_{CLK})$.

Les spécifications temporelles s'établissent alors ainsi que le montrent la figure 7 et le tableau 3.

Dans le tableau 3, on notera que les temps marqués d'une astérisque sont donnés sans tenir compte de l'attente occasionnée par REAL; en fait,

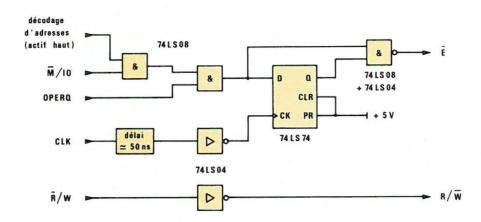


Fig. 13. - Interface proposé pour le 2650 A1.

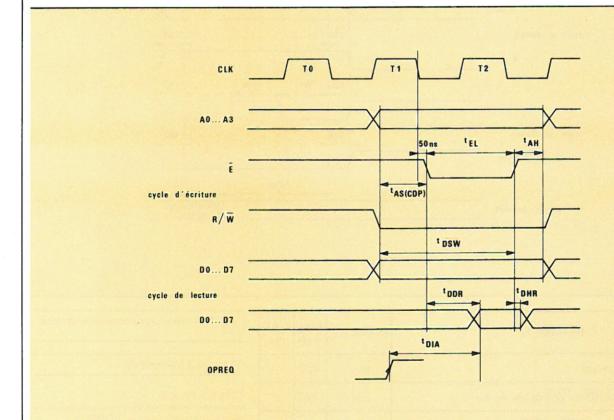


Fig. 14. - Chronogramme des signaux d'interface avec le 2650 A1.

pour notre application ($t_W = 2t_{CLK}$) on a:

- $t_{CC} = 1040 \text{ ns min.};$
- $t_{AD} = 1215 \text{ ns max.};$
- $t_{RD} = 940 \text{ ns max.}$

Le schéma proposé (fig. 8) utilise les principes suivants :

- E descend sur le front descendant de CLK qui suit la descente de RD ou WR. E remonte avec RD ou WR;
- R/W descend sur le front montant de CLK qui suit la descente de WR et

remonte sur le front montant de CLK qui suit la remontée de $\overline{\text{WR}}$;

 RDY est créé grâce à un monostable actionné par le décodage du GDP.

Dans le chronogramme (fig. 9), les temps obtenus sont compatibles avec la figure 1 soit :

- t_{EL} = 640 ns min > t_{EL} spécifié
- = 450 ns min;
- t_{AS} = 160 ns min = t_{AS} spécifié;
- $-t_{DSW} = 800 \text{ ns min} > t_{DSW} \text{ spécifié}$ = 260 ns min ;

- $-t_{RD} = t_{DDR} + t_{CLK} \text{ max} = 640 \text{ ns}$ $\text{max} < t_{RD} \text{ spécifié} = 940 \text{ ns max};$
- $t_{DHR} = 10 \text{ ns min} > t_{RDH} \text{ spécifié}$ = 0 ns min ;
- t_{AH} = 120 ns min > t_{AH} spécifié = 10 ns min.

Remarques

- Pour des fréquences d'horloge entre 2,6 MHz et 3,125 MHz, le monostable gardera cette valeur $t_{\overline{RDY}} \simeq 960$ ns.
- Pour des fréquences entre

0,85 MHz et 2,6 MHz, un seul cycle d'attente suffira et on choisira une valeur $t_{\overline{RDY}} \simeq 2$. t_{CLK} .

 Pour des fréquences inférieures à 0,85 MHz le monostable devient inutile.

Interface

au microprocesseur

6502 à 1 MHz

Les spécifications temporelles du 6502 sont celles de la figure 10. La figure 11 donne le schéma de l'interface proposé. Le 6502 est directement compatible avec les spécifications des processeurs graphiques (tabl. 4).

Interface

au microprocesseur

2650 A1

Les spécifications temporelles du 2650 A1 s'établissent comme le montrent la figure 12 et le tableau 5.

Le schéma proposé en figure 13 utilise le principe suivant :

Tableau 4

PARAMETRE	SYMBOLE	MIN. (ns)	MAX. (ns)
Largeur d'impulsion Φ₂ haut	t _{PWH}	460	
Positionnement des adresses après Φ ₂ bas	t _{ADS}		300
Maintien des adresses après Φ ₂ bas	t _{HA}	30	
Positionnement de R/W après Φ₂ bas	t _{RWS}		300
Maintien de R/W après Φ ₂ bas	t _{HRW}	30	
Positionnement des données en écriture après Φ_2 haut	t _{HDS}		200
Maintien des données en écriture après Φ ₂ bas	t _{HW}	30	
Temps d'accès en lecture des données	tacc		575
Positionnement des données en lecture avant Φ_2 bas	t _{DSU}	100	
Maintien des données en lecture après Φ ₂ bas	t _{HR}	10	

- E descend sur le front descendant retardé de l'horloge qui suit la montée du signal OPREQ;
- R/W provient de R/W inversé.

Le délai est introduit afin de respecter un temps de prépositionnement des adresses et de R/W suffisant

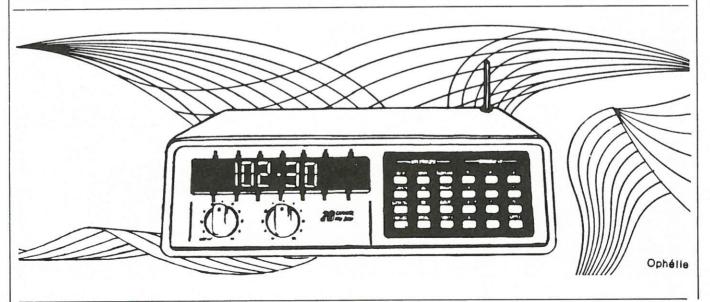
avant la descente de \overline{E} . Il pourra être réalisé avec des portes TTL ou encore avec une ligne à retard (fig. 14).

Ph. Lambinet V. Gattegno

Laboratoire d'applications Thomson Semiconducteurs (Grenoble)

Tableau 5

PARAMETRE	SYMBOLE	MIN.	MAX.
Période de l'horloge	t _{CP}	500	
Largeur d'impulsion horloge haute	t _{CH}	250	
Largeur d'impulsion horloge basse	t _{CL}	250	
Positionnement de OPREQ haut après horloge haute	tcon	50	200
Largeur d'impulsion OPREQ haut	toR	t _{CP} + t _{CH} - 50	$t_{CP} + t_{CH} + 75$
Pré-établ. et maintien des adresses par rapport à OPREQ	tas	50	
Pré-établ. et maintien des données par rapport à OPREQ	t _{DS}	50	
Pré-établ. et maintien des signaux de contrôle par rapport à OPREQ	tcss	50	
Positionnement de l'impulsion d'écriture après OPREQ haut	t _{WPD}	t _{CH} - 50	t _{CH} + 100
Largeur d'impulsion d'écriture haute	twpw	t _{CL} - 50	t _{CL} + 125
Temps d'accès des données en lecture après OPREQ haut	t _{DIA}	t _{CP} + t _{CH} - 200	
Temps de maintien des données en lecture après OPREQ bas	t _{DIH}	0	



Fréquencemètres économiques en circuits intégrés

De nouveaux circuits MSI et LSI C-MOS permettent de réaliser aujourd'hui une fonction « fréquencemètre » avec un minimum de composants, assurant ainsi : miniaturisation, basse consommation et fiabilité accrue.

Toutefois, il est difficile de trouver le circuit et le schéma type répondant à toutes les applications. Les paramètres tels que : type d'affichage (LED ou LCD), encombrement, consommation, performances, fonctions diverses, sont autant d'éléments qui ne sont pas toujours compatibles entre eux.

Destinés aux laboratoires d'applications, pour les équipements portables et les récepteurs radio, voici dans cet article quelques exemples d'applications de fréquencemètres 200 MHz réalisés avec des circuits MSI et LSI en technologie C-MOS d'Intersil.

Quelques exemples de base

Fréquencemètre pour émetteur HF/VHF (fig. 1)

S'il doit fonctionner jusqu'à 200 MHz, l'affichage des digits de poids forts n'est pas indispensable (le but recherché étant la miniaturisation). La consommation doit être la plus réduite possible si l'équipement est portable; l'affichage est donc à cristaux liquides.

Fréquencemètre de contrôle portable (fig. 2)

Il s'agit d'un appareil de mesure basse consommation (donc avec affichage LCD), qui affiche jusqu'aux dizaines de hertz sur 8 digits.

Fréquencemètre de laboratoire (fig. 3)

L'affichage s'effectue sur LED avec 8 digits. Il possède plusieurs gammes de mesures autorisant de 0,1 Hz à 100 Hz de résolution. Comme appareil de laboratoire, il doit remplir des fonctions plus sophistiquées qu'en simple fréquencemètre: il fonctionne donc également en période-mètre, compteur, mesure de rapport de fréquences, mesure d'intervalle de temps.

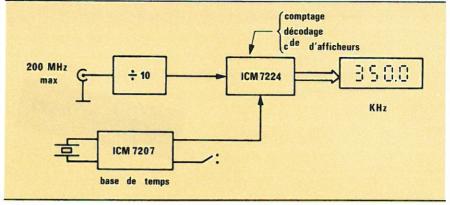


Fig. 1.

L'ICM 7226 est un fréquencemètre intégré de technologie C-MOS qui remplit toute ces fonctions, y compris la commande des afficheurs, et une sortie BCD permettant l'interface éventuel sur un bus.

Fréquencemètre pour récepteur radio (fig. 4)

Ce type de fréquencemètre (HF, VHF) ou FM (88 à 108 MHz) doit mesurer la fréquence de l'oscillateur local du récepteur (système hétérodyne), et par conséquent tenir compte du décalage de la moyenne fréquence.

En d'autres termes, la fréquence affichée n'est pas celle mesurée! Le compteur interne du fréquencemètre doit être dans ce cas programmable.

Résolution, précision stabilité

La résolution de mesure est fonction de la période de comptage. Si cette dernière est de 1 seconde, le digit de poids faible indique des hertz; mais si la fréquence à mesurer est divisée par 10 avant la chaîne de comptage, le poids faible indique alors les dizaines de hertz.

Par principe (fréquence mesurée asynchrone de la fenêtre de comptage), il y a incertitude de \pm 1 point.

La précision et la stabilité dépendent bien entendu de celles de la fenêtre de comptage issue de la base de temps pilotée par quartz.

Cette précision est celle du quartz : elle doit être exprimée en pourcen-

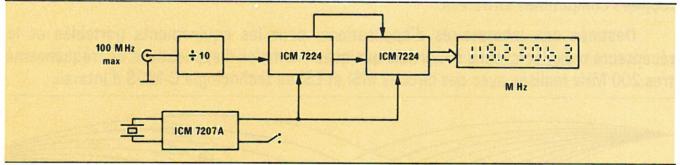


Fig. 2.

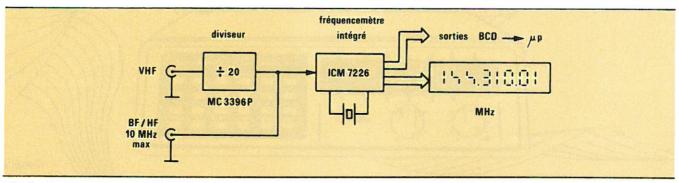


Fig. 3.

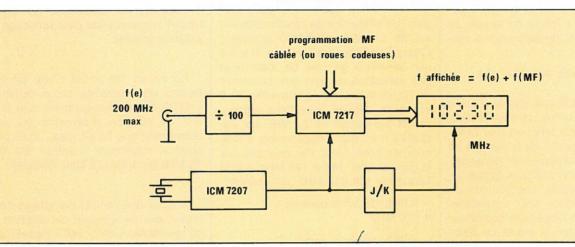


Fig. 4.

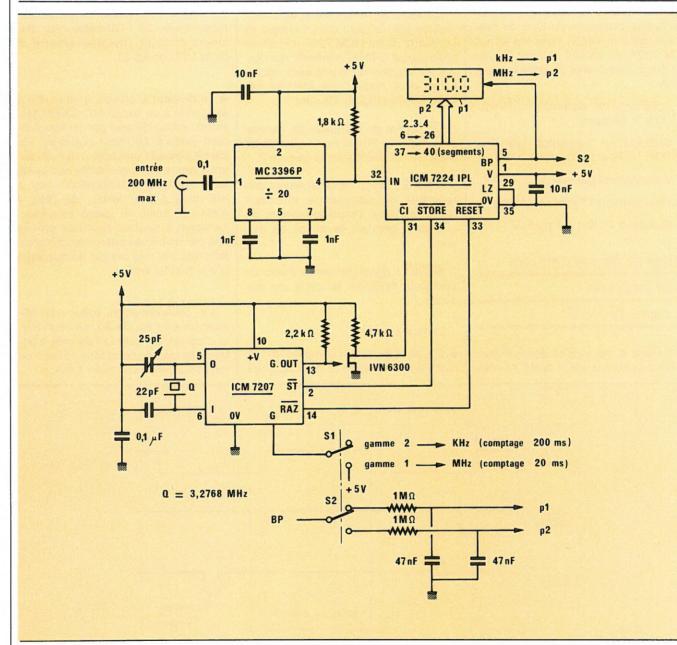


Fig. 5.

tage ou ppm. Une dérive de 10 Hz sur l'oscillateur de la base de temps ne donne pas 10 Hz de dérive sur la mesure, mais :

10 Hz fréq. quartz x fréq. mesurée

La stabilité doit être définie à court terme, moyen terme et long terme. Cette stabilité est fonction des variations de température, de la stabilité de la tension d'alimentation, et du vieillissement du quartz. Outre la qualité intrinsèque du quartz, ces sources de dérive en fréquence sont essentiellement fonction du montage oscillateur qui doit respecter le mode de résonance (série ou parallèle), la puissance d'excitation ainsi que les capacités de charge du quartz. Avec un oscillateur classique, du type de celui utilisé dans le circuit base de temps ICM 7207, on obtient (suivant le type de quartz) les ordres de grandeur suivants:

- Tolérance de calibration (25 °C): \pm 10 à \pm 50 ppm.
- Stabilité en fréquence (de 0 à 70 °C): \pm 10 à \pm 30 ppm.
- Vieillissement 1^{re} année : < 10 ppm.
- Stabilité f(V): 0,1 à 1 ppm/V.

Etude du fréquencemètre pour émetteur portable HF/VHF

Il s'agit d'une version économique, faible consommation, 4 digits, ne met-

tant en œuvre que trois circuits intégrés. La fréquence de fonctionnement est de 150 MHz (200 MHz typique); l'appareil affiche des MHz aux kHz sur une première gamme de mesure et des centaines de kHz aux centaines de Hz sur la seconde gamme (fig. 5). Il est donc destiné à certains équipements d'émission HF ou VHF sur lesquels il n'est pas indispensable d'indiquer les poids forts. Par exemple, sur la gamme VHF 144 à 146 MHz, soit la fréquence 144,310 MHz; on obtient :

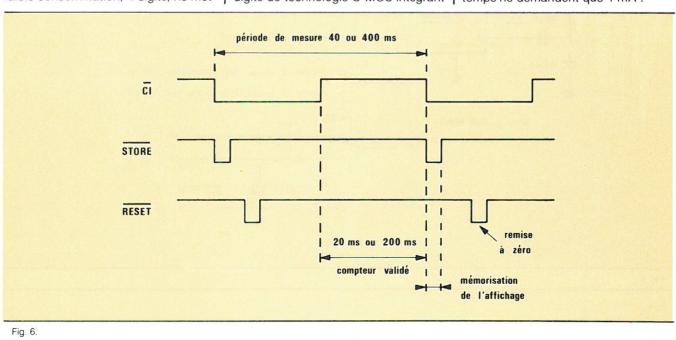
- Affichage sur la gamme 1 : 4.310 MHz
- Affichage sur la gamme 2 : 310.1 kHz

La base de temps est entièrement réalisée par un seul circuit intégré et un quartz. C'est l'ICM 7207, circuit de technologie C-MOS d'*Intersil*, qui délivre les signaux de procédures nécessaires pour réaliser une fonction fréquencemètre (fig. 6). Ce sont :

- CI: signal de validation de l'entrée du compteur, 20 ms sur la gamme de mesure 1 et 200 ms sur la gamme 2.
- STORE: signal de chargement des registres de commande affichage (évite de voir l'incrémentation du compteur pendant la phase de mesure).
- RESET: signal de remise à zéro du compteur (initialise le cycle de mesure).

Notons encore:

• L'ICM 7224 est un compteur 4 1/2 digits de technologie C-MOS intégrant


4 décades, les décodeurs, les registres et la commande pour affichage à cristaux liquides.

Ce circuit fait partie d'une famille hautes performances de compteurs C-MOS *Intersil.* Il fonctionne sous 3 à 6 V de tension d'alimentation, ne consomme que 50 μ A max., et sa fréquence maximum d'entrée est de 15 MHz garantie (25 MHz typique).

A noter que l'entrée comptage s'effectue sur un « trigger de *Schmitt »*, qu'une sortie « carry out » permet de cascader plusieurs ICM 7224, et que le signal de plan-arrière (« Backplane ») sort en niveaux trois états autorisant ainsi un « OU-câblé » sur plusieurs circuits (fréquencemètre 8 digits LCD en fig. 2).

• Le diviseur d'entrée, dont le rôle a été confié à un circuit MC 3396P Motorola, est un diviseur par 20 fonctionnant jusqu'à 200 MHz (typique). Ce circuit possède une bonne dynamique en entrée et une sensibilité suffisante pour ce type d'application (100 à 400 mV_{eff} à 125 MHz); de plus, il n'est pas limité en basse fréquence. Le signal à mesurer peut être prélevé soit par un condensateur de faible valeur, soit par une boucle de couplage (Ze = 600 Ω/ 6 pF).

La consommation totale du fréquencemètre est de 30 mA sous 5 V, et c'est en fait celle du diviseur d'entrée ; les circuits comptage et base de temps ne demandent que 1 mA!

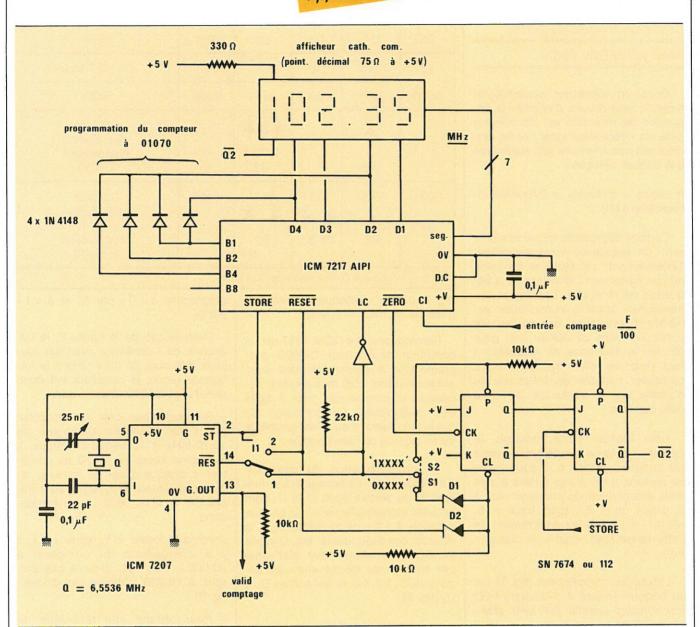
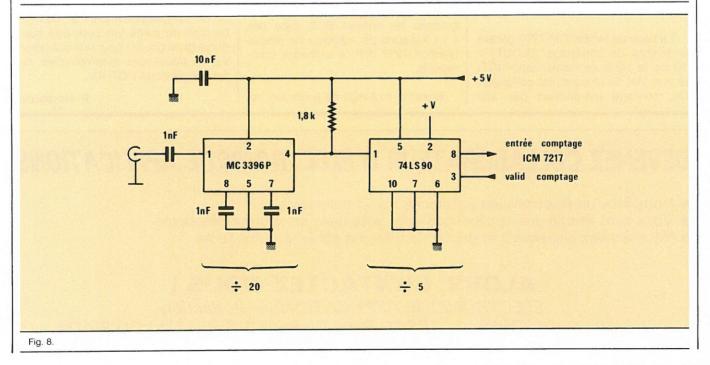



Fig. 7.

Etude du fréquencemètre pour récepteur radio

Dans un récepteur superhéterodyne, le seul moyen d'afficher la fréquence de réception est de mesurer celle de l'oscillateur local; cette dernière est soit inférieure soit supérieure à la fréquence reçue :

fr. reçue = fr. locale \pm fréquence intermédiaire (FI).

Certains récepteurs modernes utilisent un oscillateur local synthétisé. Généralement, ce système digitalisé permet également l'affichage de la fréquence de réception. Les autres appareils font appel à un oscillateur variable (réception à couverture continue). Dans ce dernier cas, pour afficher la fréquence de réception, il faut disposer d'un fréquencemètre particulier capable de soustraire ou d'additionner la valeur de la F.I. à celle mesurée.

Pour réaliser cette fonction, le compteur interne du fréquencemètre est programmable: à chaque cycle de mesure, il n'y a pas remise à zéro mais chargement du compteur soit à la valeur de la F.I. (osc. local = fr. reçue - F.I.), soit au complément de cette valeur (osc. local = fr. reçue + F.I.).

L'exemple d'application (fig. 7) est un fréquencemètre 4 1/2 digits LED fonctionnant jusqu'à 200 MHz (FM: 88 à 108 MHz par exemple...) avec F.I. = 10,7 MHz et oscillateur local = fr. reçue – F.I.

La base de temps ICM 7207 génère la fenêtre de comptage (G.OUT) à 10 ms, le signal de mémorisation (ST) et le signal de chargement compteur. Un montage pré-diviseur par 100

	D5	D4	D3	D2	D1	Digits
The State of the S	0	1	0	7	0	F.I. 10,7 MHz
	0000	0001	0000	0111	0000	BCD
	S1	★ B1		B4 B1 B2		Câblage des diodes chargement à 1070
	0001 S2	1000 B8	1001 B8 B1	00,11 B2 B1	0000	Câblage des diodes pour un chargement à 18930

Fig. 9. - Principe de la programmation de l'ICM 7217.

(fig. 8) permet d'attaquer le compteur principal (fr. max. = 2 MHz).

Remarquons que l'ICM 7217 est un compteur/décompteur C-MOS programmable à quatre décades avec entrées/sorties BCD multiplexées, décodeurs et commandes pour 4 digits LED multiplexés. Le demi-digit de poids fort (valeur 0 ou 1) est généré de façon externe par une bascule J.K.

La programmation du compteur s'effectue ainsi : l'affichage étant multiplexé, les sorties digits D_1 à D_4 sont activées séquentiellement. Sur chaque passage à « 0 » d'une sortie digit, la décade correspondante est chargée en BCD. Le chargement s'effectue par câblage de diodes entre les entrées BCD 1-2-4-8 et les sorties D_1 à D_4 (fig. 9).

Le signal LC initialise le chargement du compteur. Le passage à « 0 » d'une sortie digit (D_1 à D_4) programme les entrées BCD avec des « 1 » logiques par câblage de diodes (version 7217 AIPI à cathodes communes).

Nota: le 1/2 digit de poids fort est

programmé à «0 » par S_1 et à «1 » par S_2 .

Dans le cas de la figure 7, la fréquence de l'oscillateur local est toujours inférieure de 10,7 MHz à la fréquence reçue, le compteur est donc pré-chargé à 1070. D'autre part :

Si l'oscillateur local du récepteur est d'une fréquence supérieure de 10,70 MHz à la fréquence reçue, il faut donc soustraire 1070 au compteur à chaque cycle de mesure, ou plus simplement le charger au complément à 1070 de la pleine échelle, donc :

si l'on a fr. locale = fr. reçue + F.l., il y a chargement du compteur à 20 000 - F.l., soit, dans le cas présent, à 18 930 (câblage des diodes : fig. 9).

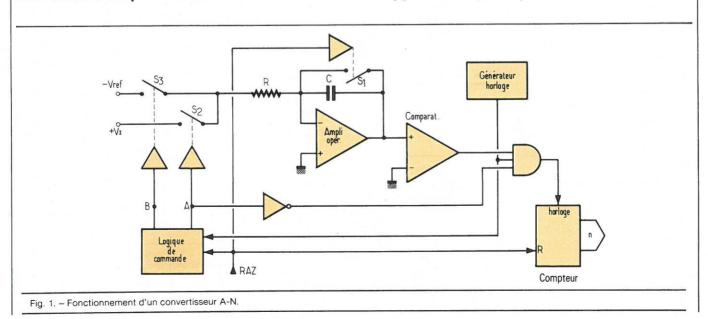
– Pour obtenir une résolution de 1 kHz, il suffit de laisser la broche 11 de l'ICM 7207 non connectée (la fenêtre de comptage est alors à 100 ms). Le digit de poids fort peut être supprimé (bascule JiK) pour une utilisation sur les fréquences décamétriques, ou sur des gammes PO/GO.

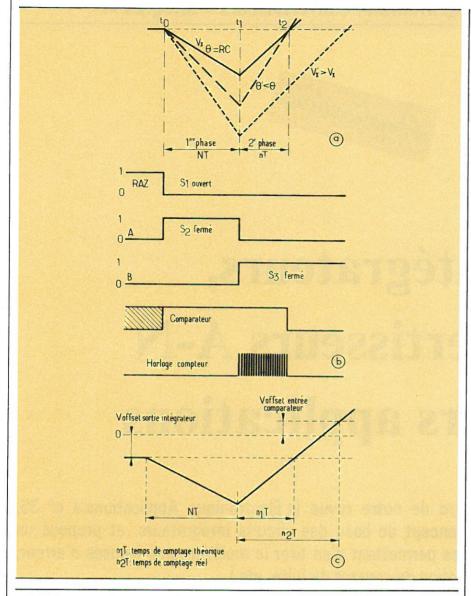
P. Horcholle

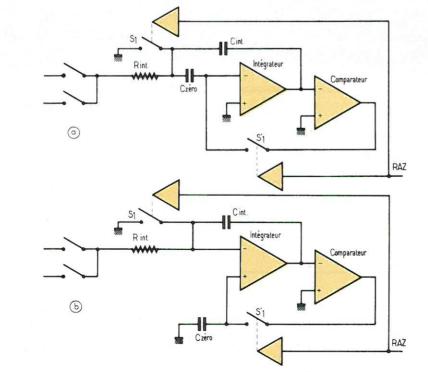
DEVENEZ COLLABORATEUR D'ELECTRONIQUE APPLICATIONS

- Vous êtes un électronicien passionné par la technique
- Vous avez étudié des applications originales dans un secteur déterminé
- Vous écrivez clairement et confectionnez des schémas sans faute

ALORS, CONTACTEZ-NOUS!


ELECTRONIQUE APPLICATIONS — Rédaction 2 à 12, rue de Bellevue, 75940 Paris Cedex 19. Tél. : (1) 200.33.05


Intégrateurs, convertisseurs A-N et leurs applications


Dans le précédent numéro de notre revue (« Electronique Applications » n° 35, p. 45) nous avons traité du concept de base des circuits intégrateurs, et proposé un ensemble d'éléments théoriques permettant d'en tirer le meilleur parti (causes d'erreur, et compensation de celles-ci, notion de courant de fuite, etc.)

Quelques applications de base complétaient cette étude. L'article ci-après la prolonge en quelque sorte, en envisageant le cas des convertisseurs analogique-numérique et s'oriente de plus vers des schémas détaillés d'applications pratiques.

Applications.

Fonctionnement d'un convertisseur A-N

Le convertisseur analogique-numérique double rampe, bien qu'entaché d'un certain nombre de défauts (pouvant être corrigés ou minimisés), trouve une application non seulement dans les voltmètres à résolution faible ou moyenne, mais aussi dans quelques autres appareils qui font l'objet de cette étude. Rappelons le fonctionnement de ce convertisseur A-N, symbolisé à la figure 1.

Le signal de remise à zéro (RAZ) étant au niveau « 1 », le compteur est bloqué ainsi que la logique de commande. L'interrupteur S₁ est fermé, la capacité C est donc déchargée et la tension en sortie de l'intégrateur est nulle.

Lorsque le signal de RAZ passe au niveau « 0 », S_1 s'ouvre, S_2 se ferme et y reste pendant un intervalle de temps t_1 – t_0 égal à N périodes d'horloge (N . t = t_1 – t_0). Pendant ce temps, l'intégrateur reçoit la tension Vx à convertir, la tension en sortie est :

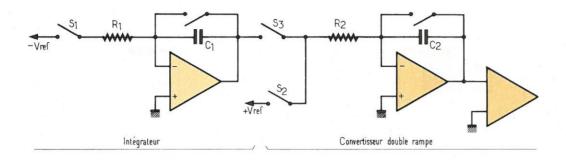
$$Vs = \frac{-1}{RC} \int_{t0}^{t1} Vx \cdot dt = \frac{-1}{RC} Vx \cdot N \cdot T$$

Cette première phase terminée, la logique de commande ouvre S_2 , ferme S_3 et lève l'inhibition horloge du compteur (la sortie du comparateur est à « 1 » depuis le début de la première phase et est à un état indéfini pendant la RAZ). L'intégrateur reçoit alors la tension Vref de polarité opposée à celle de Vx. Dans cette deuxième phase, la tension en sortie de l'intégrateur décroît et passe par zéro au bout d'un temps $nT = t_2 - t_1$. Le comparateur change d'état et ferme l'entrée horloge du compteur (fig. 2).

Soit:

$$\frac{1}{RC}V^*NT = \frac{1}{RC}Vref nT$$

et


$$nT = NT \frac{Vx}{Vref}$$
, $n = N \frac{Vx}{Vref}$

Pour une valeur donnée du rapport Vx/Vref, le nombre d'impulsions enre-

Fig. 2. – (Ci-dessus). Principe de la double rampe et erreurs dues aux tensions de décalage.

Fig. 3. - (Ci-contre). Compensation des tensions de décalage.

Fig. 6. – Chronogramme se rapportant au montage de la figure 7. Ci-contre, en page de droite

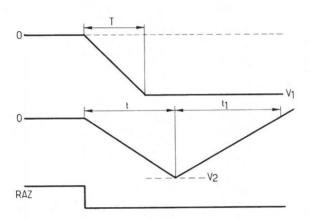
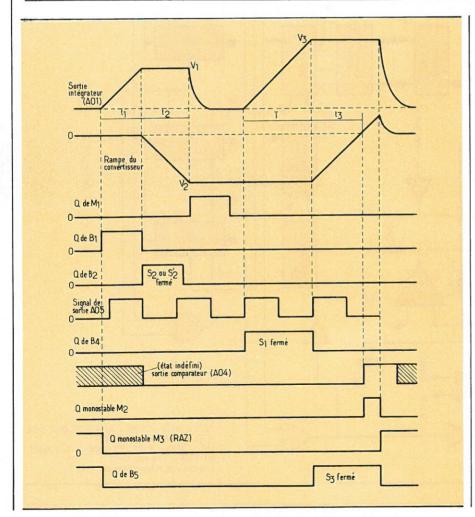
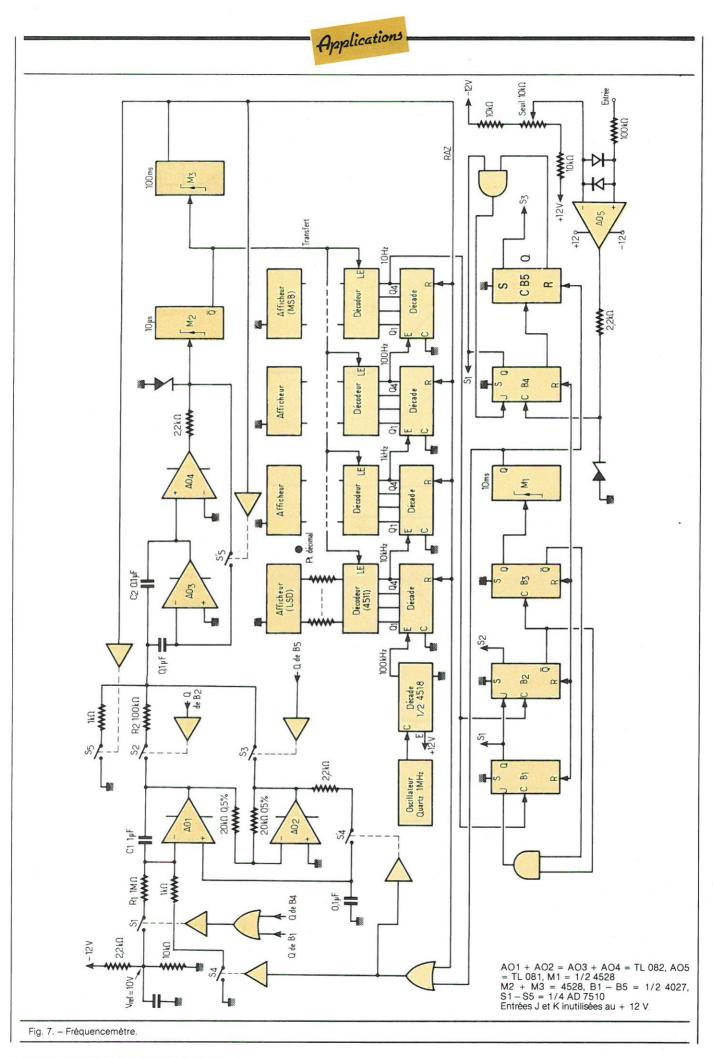



Fig. 4 et 5. - Principe d'un circuit intégrateur et chronogramme correspondant.



gistrées par le compteur est indépendant et de la fréquence horloge et de la constante d'intégration RC. En règle générale, Vx/Vref est inférieur à l'unité et n < N, mais rien ne s'oppose à ce que ce rapport soit supérieur à 1 et dans ce cas n > N; encore faut-il que le compteur ait une capacité suffisante.

La double rampe ne doit pas être écrêtée, sous peine d'introduire une erreur sur la valeur de n. En désignant par Vs max la tension maximale admissible en sortie de l'intégrateur, la valeur maximale de Vx est :

$$Vx max = NT \frac{Vsmax}{RC}$$

Les tensions de décalage de l'intégrateur et du comparateur introduisent une erreur, ainsi que le courant de polarisation de l'amplificateur opérationnel. En choisissant une technologie BiFET ou mieux BiMOS pour ce dernier, le courant de polarisation étant très faible, son effet devient négligeable. Quant aux tensions de décalage, leur effet est réduit ou annulé avec les montages de la figure 3. Dans ces montages, l'ensemble intégrateur-comparateur est bouclé en gain unité pendant que le signal RAZ est à « 1 » et une tension de compensation est stockée dans la capacité Co.

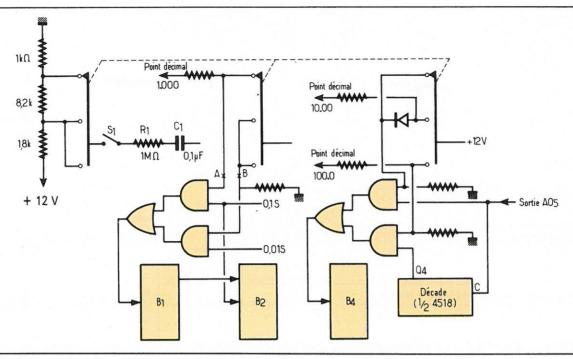


Fig. 8. - Schéma pour commutation manuelle.

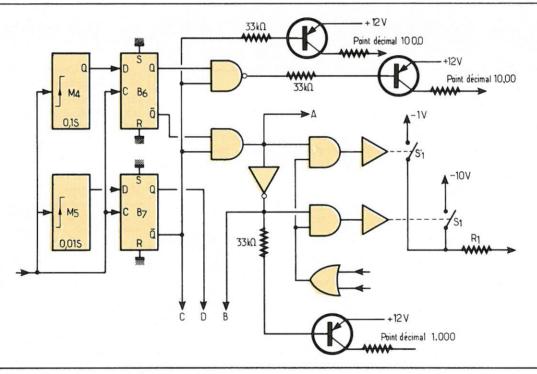


Fig. 9. - Schéma pour commutation automatique.

Fréquencemètre pour basses fréquences

Les fréquencemètres classiques ne permettent pas une bonne résolution de mesure aux fréquences basses avec un temps de mesure suffisamment court, seuls les fréquencemètres dits « réciproques » le permettent. Le circuit décrit plus loin permet une mesure des fréquences entre 1 Hz et

1 kHz avec une résolution de 1/1000e (ou plus) et un temps de mesure qui n'excède pas 2,5 s; mais, avant de décrire ce montage, procédons à une étude du principe de fonctionnement.

Un intégrateur reçoit une tension continue constante - Vref (l'interrupteur S1 étant fermé) et intègre cette tension pendant une durée égale à la période T du signal. Au bout de ce temps, l'interrupteur S₁ s'ouvre et la tension en sortie de l'intégrateur est conservée (c'est la capacité qui permet cette mémoire).

On a (fig. 4 et 5) : $V_1 = \frac{1}{\tau_1} \text{ Vref . T, avec } \tau_1 = R_1 C_1$

Simultanément, l'intégrateur du convertisseur double rampe reçoit une tension + Vref (S2 est fermé) pendant un temps t au bout duquel la tension en sortie est :

$$-V_2 = \frac{1}{\tau_2} \text{ Vref. t, avec } \tau_2 = R_2 C_2$$

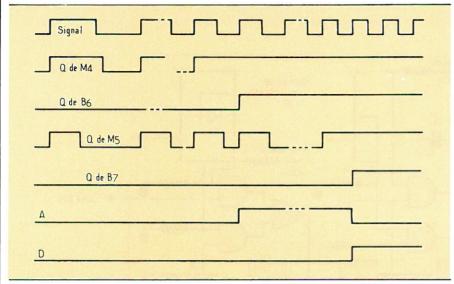


Fig. 10. - Chronogramme correspondant à la figure 9.

Gamme	t ₁	Vref	V ₁	V ₂	V _{3max}	V _{3min}	Durée intégration période
1 à 10 Hz	0,1s	1 V	1 V	- 10 V	10 V	1 V	T
10 à 100 Hz	0,01s	10 V	1 V	- 10 V		1 V	T
0,1 à 1 kHz	0,01s	10 V	1 V	- 10 V		1 V	10 T

Tableau 1.

La tension V_1 est ensuite appliquée à l'entrée du convertisseur (c'est la deuxième phase de la conversion), l'interrupteur S_3 étant fermé. Le comparateur change d'état lorsque :

$$\frac{1}{\tau_2} \operatorname{Vref} \cdot t \cdot t_1 = \left(\frac{1}{\tau_1} \operatorname{Vref} T \right) \frac{1}{\tau_2} t_1$$
soit $t_1 = \frac{t \cdot \tau_1}{T}$ [1]

En donnant à t et τ_1 une valeur fixe bien définie, un compteur peut recevoir pendant t_1 (fig. 5) un nombre n d'impulsions qui est représentatif de la fréquence, mais sa dépendance de τ_1 est un inconvénient qu'il est toutefois possible d'éliminer. Le seul attrait du montage de la figure 4 est son extrême simplicité.

Pour que t_1 , donc n, soit indépendant de τ_1 , il faut que cette constante de temps apparaisse dans chaque membre de l'équation (1).

Ceci est obtenu en appliquant la tension – Vref à l'intégrateur pendant un temps t_1 (différent du précédent) à l'issue duquel la tension en sortie est conservée et a pour valeur :

$$V_1 = \frac{1}{\tau_1} Vref \cdot t_1$$

 V_1 est ensuite appliquée au convertisseur double rampe pendant un temps t_2 , la tension en sortie a pour valeur :

$$-V_2 = \frac{1}{\tau_2} \left(\frac{1}{\tau_1} \text{ Vref. } t_1 \right) t_2$$

A l'issue de cette deuxième phase de fonctionnement, la tension V_2 est conservée (S_2 et S_3 ouverts), alors que la capacité C_1 est déchargée, la sortie Q du monostable M_1 étant momentanément à « 1 » (fig. 7).

Le premier intégrateur reçoit à nouveau – Vref (nouvelle fermeture de S₁) pendant un temps égal à la période T du signal; la tension en sortie prend la valeur :

$$V_3 = \frac{1}{\tau_1} \text{Vref} \cdot T$$

Cette tension V_3 est conservée pendant la dernière phase. Après inversion du signe par AO2 (schéma fig. 7, chronogramme fig. 6), c'est une tension – V_3 qui est appliquée au convertisseur dont la tension en sortie s'annule lorsque :

$$\frac{1}{\tau_1\,\tau_2}\;\;\text{Vref.}\;t_1\,.\;t_2=\frac{1}{\tau_1\,\tau_2}\;\;\text{Vref.}\;T.\;t_3$$

Soit:

$$t_1 \cdot t_2 = T \cdot t_3$$
, et $t_3 = \frac{t_1 t_2}{T}$

En fixant comme dans le schéma t_1 et t_2 à 0,1 s et la fréquence horloge à 100 kHz, le nombre d'impulsions reçues par le compteur pendant t_3 est de 1000 pour une fréquence du signal égale à 1 Hz, la résolution étant ici de 1 mHz.

Ce montage ne peut fonctionner dans une plage étendue de fréquences sans commutations, en raison de la valeur limitée de la tension V₃ en sortie de l'intégrateur, ceci aux fréquences basses. Inversement, aux fréquences élevées, V₃ est faible et la pente de la rampe du convertisseur dans la dernière phase est en conséquence faible, ce qui est défavorable à une bonne précision du point de changement d'état du comparateur, et par suite à une bonne précision de la mesure.

Le séquencement des différentes phases est obtenu au moyen des bascules B_1 à B_5 .

Pour un fonctionnement entre 1 Hz et 1 kHz, le tableau 1 et des schémas de commutation manuelle et automatique (fig. 8, 9 et 10) donnent les indications nécessaires.

Phasemètre

à affichage numérique

Dans de nombreux phasemètres, les signaux injectés sont mis en forme afin d'obtenir des signaux carrés qui sont appliqués sur les entrées d'un OU exclusif (XOR). La durée des impulsions en sortie du XOR est proportionnelle au déphasage et deux impulsions ont lieu par période. Il suffit donc de mesurer la tension moyenne en sortie du XOR pour avoir une information (analogique) représentant le déphasage, mais pour cela il faut employer un filtre passe-bas dont la fréquence de coupure doit être très inférieure à la fréquence des signaux d'entrée. Ceci conduit à un filtre dont la constante de temps est élevée et le temps de réponse de l'appareil devient très long aux basses fréquences puisqu'il peut atteindre plusieurs dizaines de secondes.

Le montage décrit ici évite cet inconvénient (fig. 11).

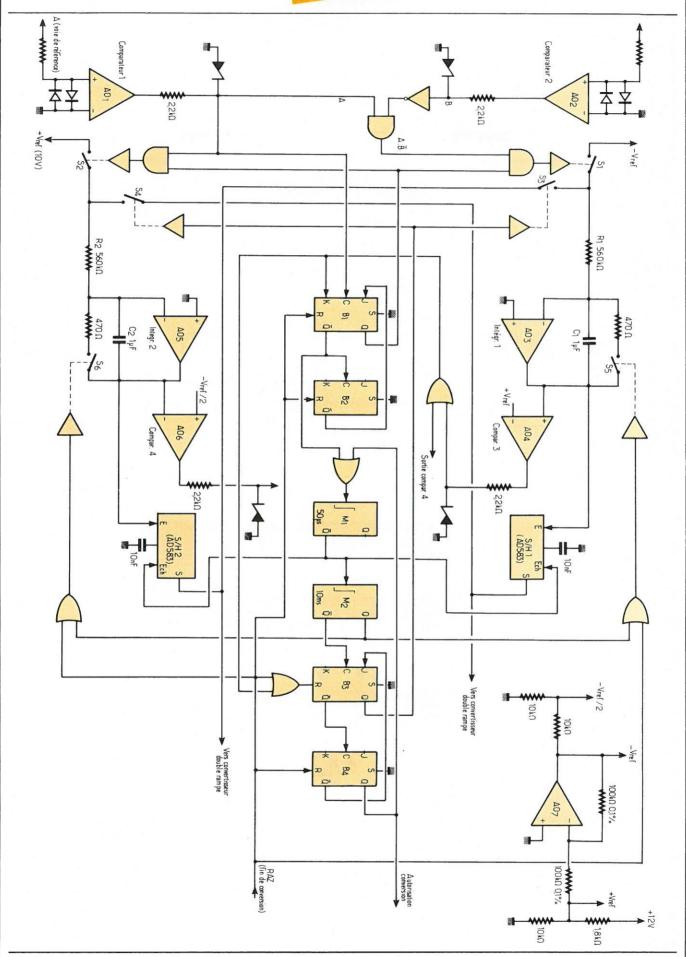


Fig. 11. - Le phasemètre. B1 - B2 = B3 - B4 = B5 - B6 = 4027, S1 - S4 = AD 7510, S5 - S6 = 1/2 AD7510, M1 - 2 = 4528, AO1 - AO2, AO3 - AO4, - AO5 - AO6 = TL 082, AO7 = TL 081. Entrées J et K non utilisées au + 12 V.

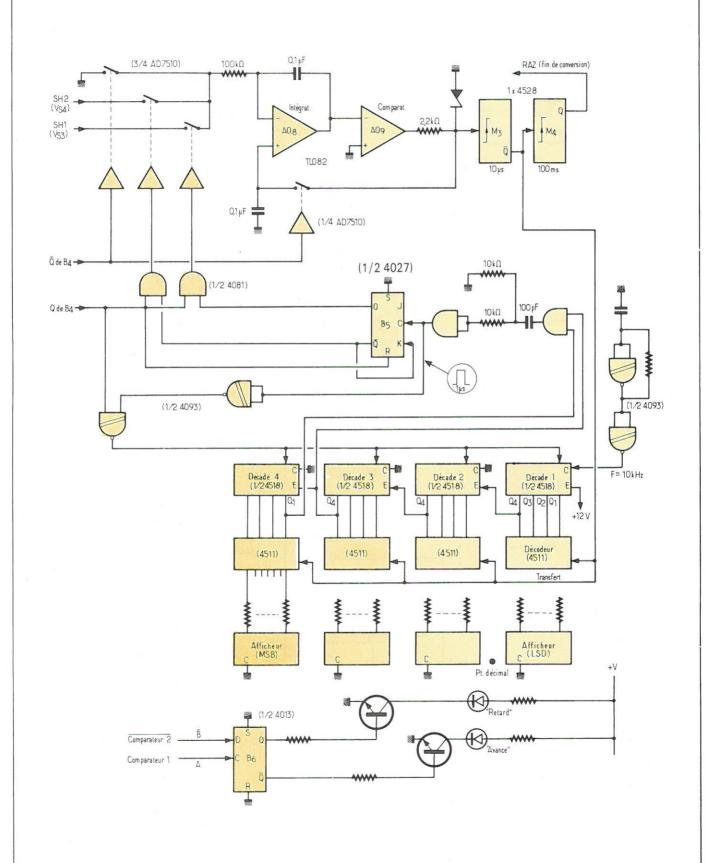


Fig. 12. – Schéma de la partie « affichage » du phasemètre.

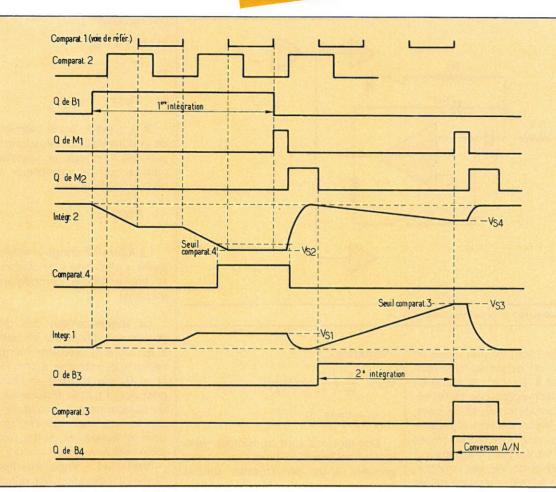


Fig. 13. - Chronogramme correspondant à la figure 11.

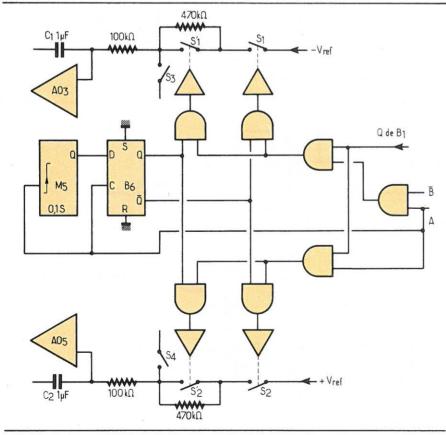


Fig. 14. - La bascule B6 indique si le déphasage est « avant » ou « arrière ».

Un intégrateur dont la constante d'intégration est $\tau_1 = R_1C_1$ reçoit une tension - Vref par l'intermédiaire de l'interrupteur S₁. Cet interrupteur est commandé par la sortie d'un circuit ET dont le signal en sortie est $S = A.\overline{B}$, A et B étant les signaux d'entrée mis en forme.

Un second intégrateur reçoit une tension + Vref par l'intermédiaire de l'interrupteur S2 commandé par le signal de la voie de référence, c'est-àdire le signal A, il est donc alternativement fermé puis ouvert pendant T/2. La constante d'intégration est :

 $\tau_2 = R_2C_2$.

Au bout d'un temps égal à une période, les tensions en sortie des intégrateurs sont:

intégrateur 1 :

$$V_{S1} = \frac{1}{\tau_1} Vref.t$$

intégrateur 2 :

$$-V_{S2} = \frac{1}{\tau_2} \text{ Vref } \frac{T}{2}$$

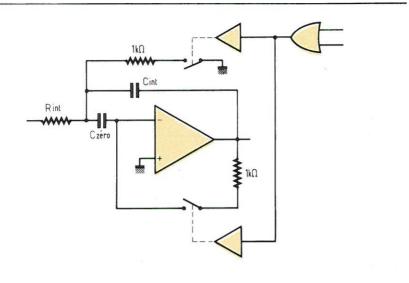


Fig. 15. - Compensation de l'offset des intégrateurs

Ces tensions sont ensuite mises en mémoire par un échantillonneur-bloqueur S/H_1 et S/H_2 . Les capacités C_1 et C_2 sont déchargées par l'intermédiaire des interrupteurs S_5 et S_6 , commandés par le monostable M_1 . Commence alors une deuxième phase d'intégration de V_{S1} par l'intégrateur 2 (S_3 est fermé) et de V_{S2} par l'intégrateur 1 (S_4 est fermé), avec une même durée d'intégration t_1 . Les tensions en sortie des intégrateurs deviennent :

intégrateur 1 :

$$V_{S3} = \frac{-1}{\tau_1} \left(\frac{1}{\tau_2} \text{ Vref } \frac{T}{2} \right) t_1$$
$$= \frac{-1}{\tau_1 \tau_2} \text{ Vref } \frac{T}{2} t_1$$

intégrateur 2 :

$$V_{S4} = \frac{1}{\tau_2} \left(\frac{1}{\tau_1} \operatorname{Vreft} \right) t_1$$
$$= \frac{1}{\tau_1 \tau_2} \operatorname{Vreft} \cdot t_1$$

Ces tensions sont transférées dans les échantillonneurs-bloqueurs et appliquées à un convertisseur double rampe, qui reçoit $V_{\rm S3}$ dans la première phase de la conversion et $V_{\rm S4}$ dans la deuxième. La constante d'intégration du convertisseur étant $\tau_{\rm 3}=R_{\rm 3}C_{\rm 3}$, on obtient :

$$\frac{-1}{\tau_3} \quad \left(\frac{1}{\tau_1 \tau_2} \quad \text{Vref t . t}_1\right) t_2$$
$$= \frac{-1}{\tau_3} \quad \left(\frac{1}{\tau_1 \tau_2} \quad \text{Vref } \frac{T}{2} . t\right) t_3$$

soit finalement :

$$2t \cdot t_2 = T \cdot t_3$$

et

$$t_3 = 2t_2 \frac{t}{T}$$

Si t₂, c'est-à-dire la première phase de la conversion, correspond à 1 800 périodes d'horloge, la quantité n enregistrée par le compteur dans la deuxième phase est :

$$n = 3600 \frac{t}{T}$$

La figure 12 donne le schéma de la partie « affichage » du phasemètre et la figure 13, le chronogramme du montage.

Le séquencement des différentes phases est obtenu par les bascules B_1 à B_4 . Dans la première intégration, la bascule B_1 retourne à son état initial Q=0, dès le front montant du signal A qui suit le changement d'état du comparateur 3. Ceci évite d'atteindre la saturation de l'intégrateur 2, dont la tension en sortie reste comprise entre -5 et -10 V environ (- Vref/2 et - Vref). Aux fréquences élevées l'intégration est effectuée sur plusieurs périodes, jusqu'à ce que B_1 puisse changer d'état.

La durée de la deuxième intégration dont la valeur importe peu, doit être la même pour les deux intégrateurs. C'est lorsque le comparateur 4 change d'état que cesse l'intégration, V_{S3} est donc égale à Vref.

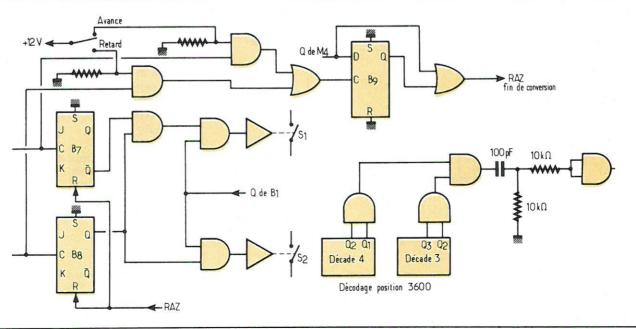


Fig. 16. - La bascule B9 synchronise la RAZ sur les signaux d'entrées

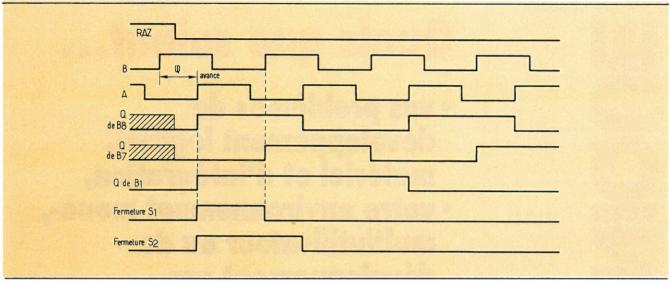


Fig. 17. - Chronogramme correspondant à la figure 16.

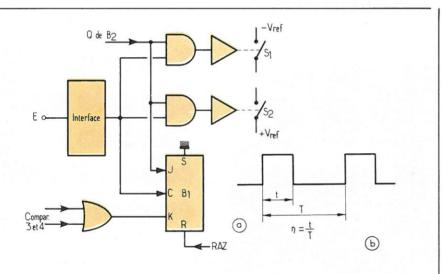


Fig. 18. - Circuit d'interface

Le choix de τ_1 et τ_2 est imposé par la fréquence la plus basse à laquelle le phasemètre doit être opérationnel, et par Vref.

Le temps de mesure est égal à la somme des durées des deux phases d'intégration successives et de colle nécessaire à la conversion. Pour une fréquence de 1 Hz, ce temps est de l'ordre de 2,5 s avec les valeurs du schéma de la figure 11 et reste à cette valeur pour les fréquences plus élevées, à moins d'effectuer une commutation des constantes d'intégration τ_1 et τ_2 . Ces commutations ne sont pas nécessaires si la fréquence la plus basse est limitée à 10 Hz et dans ce cas $\tau_1 = \tau_2 \ge 0,1$ s (100 k $\Omega - 1$ μ F ou 1 M $\Omega - 0,1$ μ F, fig. 14).

Les tensions de décalage des intégrateurs ne sont compensées (de manière classique) que par un potentiomètre non mentionné sur le schéma de la figure 15. La compensation par mise en mémoire dans une capacité complique quelque peu les commutations, mais la précision est à ce prix.

Il est nécessaire que l'appareil indique si le déphasage est « avant » ou « arrière », l'angle affiché variant de 0 à 180°. Une bascule D (B₆) (fig. 14) permet cette indication, mais ce système n'est pas sans inconvénient puisqu'il y a un doute pour les valeurs extrêmes du déphasage. Cet inconvénient est pratiquement éliminé par l'adjonction de deux bascules JK (B7 et B₈) (fig. 16 et 17) en sortie des comparateurs d'entrée. L'affichage va dans ce cas de 0 à 360°, mais il est nécessaire de doubler les constantes au_1 et au_2 . La première phase de la conversion doit alors être égale à 3 600 périodes d'horloge.

Suivant le positionnement du signal RAZ fin de conversion par rapport aux

signaux d'entrées, la valeur affichée de l'angle est φ ou $2\pi-\varphi$ et la lecture risque d'être difficile. Pour remédier à cela, il faut que cette RAZ soit synchrone de l'un des deux signaux, c'est le rôle de la bascule B_9 de la figure 16.

Quelques mots concernant les comparateurs d'entrées. Dans un but de simplification, de simples amplificateurs opérationnels sont employés mais le temps de basculement est trop long pour permettre un fonctionnement correct aux fréquences élevées. L'emploi de comparateurs rapides est préférable.

Le signal en sortie des comparateurs doit avoir un rapport cyclique de 50 % de manière impérative et ceci quelle que soit l'amplitude, la fréquence et la forme des signaux, ce qui fait que c'est peut-être l'étage le plus délicat à réaliser et à mettre au point.

Les signaux doivent être aussi exempts que possible de distorsion harmonique et avoir une vitesse de variation autour du zéro (dV/dt) aussi grande que possible.

Enfin, mesurer ou régler le rapport cyclique d'une impulsion avec précision n'est pas chose facile si on ne dispose que d'un oscilloscope conventionnel.

Au prix d'une légère modification, le phasemètre permet cette mesure. Un circuit d'interface (fig. 18) rend les niveaux de l'impulsion compatibles avec ceux de la logique utilisée. La première phase de la conversion analogique-numérique doit correspondre à 100 ou 1 000 périodes d'horloge (suivant la résolution souhaitée).

L. Fraisse

La chromatographie en phase gazeuse: principes et applications

Le but de la chromatographie est de pouvoir analyser un mélange inconnu, liquide ou gazeux, c'est-à-dire d'en connaître les différents constituants.

Pour ce faire, le mélange sera séparé en ses différents composants, et ceux-ci pourront être définis d'un point de vue qualitatif et quantitatif.

Il existe plusieurs procédés de séparation d'un mélange, mais le plus intéressant est celui utilisant la technique de chromatographie en phase gazeuse ; nous nous attacherons donc plus spécialement à celle-ci au cours de cet article.

Cette technique de séparation offre divers avantages tels que : possibilité de séparer des mélanges comprenant de nombreux composés ; bonne fiabilité quant à l'interprétation des résultats ; de plus, les instruments sont relativement simples à utiliser, et une automatisation des mesures est possible.

La chromatographie est un moyen très puissant d'analyse, et de plus, il est possible de coupler cette technique avec d'autres, comme par exemple la spectrométrie de masse. Ce procédé, largement utilisé, sera également étudié dans cet article.

Comme centres d'intérêt, on peut citer les domaines de la recherche et de l'industrie, avec comme applications la séparation des acides et des sucres, l'étude des résidus de pesticides, le contrôle des denrées alimentaires, l'analyse médicale, la pétrochimie avec le contrôle automatique des unités de production.

Principe

La chromatographie est un procédé de séparation des divers composants d'un mélange. Le principe repose sur le fait que les éléments constitutifs d'un mélange vont être retenus sélectivement par passage de la substance à séparer au travers d'une phase fixe, celle-ci ayant des propriétés d'adsorption.

Il existe plusieurs techniques de chromatographie, à savoir sur colonne, sur papier, sur couche mince, et en phase gazeuse.

- Pour la première d'entre elles, on utilise une colonne en verre (diamètre 2 cm, longueur 50 cm) remplie d'une matière adsorbante qui constitue la phase fixe. Le mélange dont on veut séparer les constituants est introduit en haut de colonne; la solution va voyager dans celle-ci et les divers composants vont être retenus sélectivement par la matière adsorbante (fig. 1). Si maintenant, on fait passer au travers de la colonne un solvant adéquat constituant la phase mobile, celle-ci va entraîner les divers composants qui vont sortir les uns après les autres en bout de colonne.
- En ce qui concerne la seconde technique, un papier est imprégné de matière adéquate constituant la phase stationnaire. La substance à séparer, mélangée à un solvant constituant la phase mobile, est déposée sur le bord inférieur de la feuille (quelques μg). Par capillarité, l'échantillon se meut vers le bord supérieur de la feuille et | mante.

Fig. 2

Fig. 1

les divers constituants vont être séparés sélectivement (fig. 2).

- La chromatographie en couche mince est identique à la précédente, mais la phase stationnaire est ici une mince couche de silice déposée sur un support.
- Quant à la chromatographie en phase gazeuse, les éléments à séparer sont à l'état de vapeur et se déposent sélectivement le long d'une phase fixe. Ils sont entraînés par une phase mobile qui est dans ce cas un gaz inerte. Nous allons dans cet article nous intéresser plus particulièrement à cette dernière technique, qui est de loin la plus employée et la plus perfor-

Constitution de l'appareil

La figure 3 donne le schéma bloc d'un chromatographe en phase gazeuse. Le gaz, qui constitue ici la phase mobile, est dirigé vers le détecteur via un régulateur de débit, un injecteur et une colonne. Il doit présenter certaines propriétés, notamment du point de vue inertie chimique et pureté. Son choix dépend du type de détecteur; habituellement, on utilise de l'azote, de l'hydrogène, de l'hélium ou de l'argon.

Le système d'injection est une chambre métallique creusée dans un

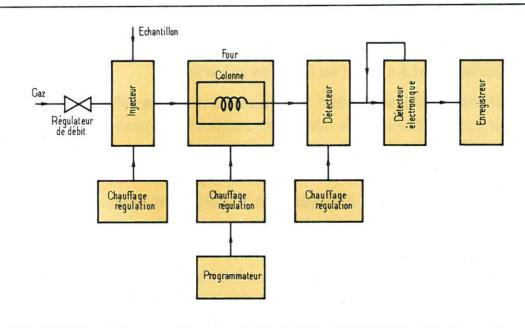
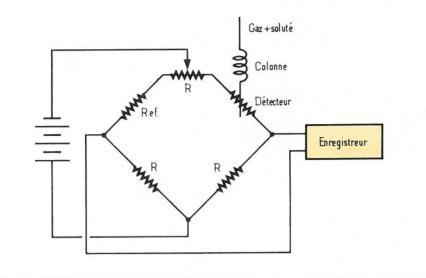



Fig. 3

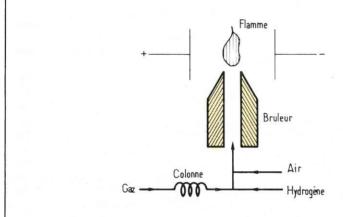


Fig. 5

bloc chauffant et sa température est choisie légèrement supérieure à celle de la colonne. L'injecteur a pour but de vaporiser instantanément (« flash évaporation »), l'échantillon lors de son introduction. Ce dernier arrive ensuite au début de la colonne chromatographique qui est constituée d'une phase stationnaire adaptée au mélange à séparer. L'échantillon sera transporté par le gaz vecteur et ses constituants vont parcourir la colonne à une vitesse qui est fonction de l'interaction entre les deux phases. Il est évident que la colonne doit être à une température voulue ; pour ce faire, elle est disposée dans un four relié à un dispositif de chauffage et de régulation. D'autre part, ce four peut soit rester à température constante pendant toute l'opération de séparation, soit voir sa température varier suivant un cycle préétabli; ce rôle est confié au programmateur. Tous les constituants vont arriver séparés en fin de colonne pour aboutir finalement dans

un détecteur également porté à température adéquate. Celui-ci transmet l'information de la présence d'un composé par un signal électrique qui sera envoyé vers une électronique et vers un enregistreur qui donnera un pic pour chaque constituant du mélange. Notons que cette électronique sera un dispositif à grande impédance d'entrée, avec un système de suppression du courant dû au bruit de fond.

Les détecteurs

Il existe plusieurs types de détecteur qui sont chacun adaptés aux produits à séparer. Comme qualités, ils doivent être sensibles, avoir une réponse stable et linéaire, ainsi qu'une bonne vitesse de réponse. Passons maintenant en revue les différents types de détecteurs existant sur le marché.

Détecteur à conductibilité thermique

Ce détecteur (fig. 4) est constitué d'un filament parcouru par un courant électrique; il est placé dans un pont de *Wheatstone* et en même temps dans le flux du gaz vecteur. La résistance du filament est fonction de sa température qui dépend de la conductibilité thermique du milieu. Au passage du gaz, on ajustera le pont à l'équilibre. Le passage du gaz avec un soluté modifie les conditions thermiques, ce qui fait varier la résistance du filament et déséquilibre le pont. Cette tension sera envoyée vers un enregistreur.

Son domaine d'utilisation est quasiment universel, mais il n'est pas très sensible. Il faut veiller à maintenir les paramètres expérimentaux constants, tels que le débit du gaz et le courant filament.

Détecteur à ionisation de flamme (« FID »)

Ce type de détecteur est représenté à la figure 5. A l'intérieur du brûleur passent de l'air et de l'hydrogène, ce qui conduit à l'établissement d'une flamme. Celle-ci est située entre deux électrodes portées à un potentiel continu de l'ordre de 150 V, et produit un phénomène d'ionisation. Les charges ioniques seront captées par les électrodes, ce qui constitue le bruit de fond. Le brûleur est également alimenté par le gaz vecteur ; au passage d'un soluté, l'ionisation augmente fortement et le courant électrique qui en résulte est envoyé vers une électronique et un enregistreur.

Ce type de détecteur est d'un emploi assez général ; de plus il convient parfaitement pour des analyses à températures programmées, vu qu'il est insensible à des variations de température. Il est beaucoup plus sensible que le précédent et possède une bonne linéarité. Il faut veiller à la tension de polarisation qui agit sur sa sensibilité, ainsi qu'au débit des gaz.

Notons ici qu'il existe un détecteur basé sur le même principe que le « FID », appelé « détecteur thermo-ionique ». La différence réside dans le fait que l'on introduit dans la flamme un sel alcalin, dans le but d'augmenter le phénomène d'ionisation, ce qui conduit à une augmentation de sensibilité pour certains composés.

Son domaine d'application est l'analyse des composés azotés et phosphorés. A titre indicatif, il peut détecter de l'ordre de 10 pg de phosphore.

Citons également le détecteur à photométrie de flamme ; comme pour le « FID », le soluté est toujours brûlé dans une flamme (fig. 6), mais la différence réside dans le fait que l'on mesure l'émission de la flamme à l'aide d'un photomultiplicateur. Pour obtenir une bonne sélectivité, on intercalera entre ce dernier et la flamme un filtre. Suivant la nature de celui-ci, ce détecteur est utilisé pour la reconnaissance des composés phosphorés ou soufrés ; on l'emploie dans l'analyse des résidus de pesticides et dans l'étude de la pollution atmosphérique.

Détecteur à captures d'électrons

Un tel détecteur (fig. 7) comprend une source radio-active qui émet des particules primaires de haute énergie ; cette source peut être soit du tritium, soit du nickel. Le gaz vecteur passant au travers du détecteur donnera des électrons secondaires par suite des collisions avec les particules de la source. Ces électrons seront captés par une électrode portée à un potentiel positif, d'où existence d'un courant électrique appelé « courant standard du détecteur ». Lorsque le gaz contient un échantillon ayant une structure électrophile, ce dernier va réagir avec les électrons et s'ioniser négativement. On aura donc une diminution du nombre d'électrons captés, d'où une diminution du courant pro-

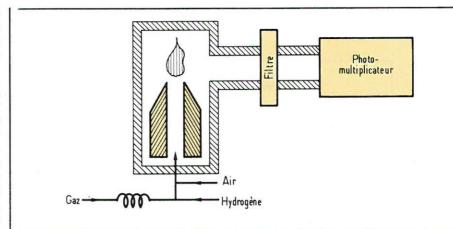


Fig. 6

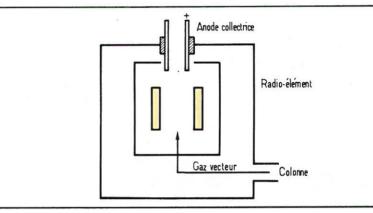


Fig. 7

portionnelle à la quantité de substance à analyser.

Notons que l'on a ici un détecteur sélectif, puisqu'il ne répond qu'aux solutés capteurs d'électrons. Sa sensibilité est bonne et comme utilisation importante, on peut citer l'analyse des pesticides.

Les colonnes

chromatographiques

La colonne chromatographique est destinée à séparer les composés d'un mélange; son choix est de la plus grande importance, puisque de celui-

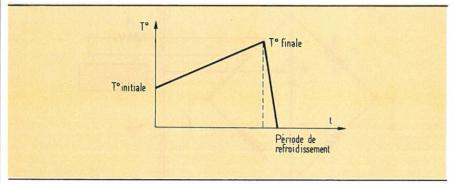


Fig. 9

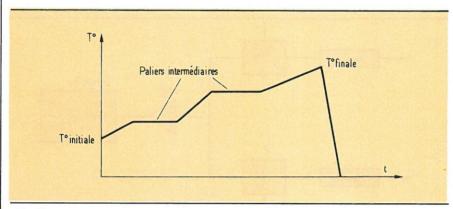


Fig. 10

ci déprendra la qualité de la séparation.

Nous ne pouvons dans le cadre de cette revue examiner en détail tout ce qui a rapport aux colonnes chromatographiques, mais il est néanmoins intéressant de dire quelques mots sur les différents types existants et leurs particularités.

On peut d'abord citer les colonnes à remplissage qui sont constituées d'un tube, dont le diamètre intérieur est de quelques millimètres et dont la longueur peut aller jusqu'à plusieurs mètres. Elles sont généralement enroulées en hélice de manière à les adapter à la géométrie du four. Le matériau constituant la colonne doit présenter une inertie chimique vis-àvis des composés à séparer : on utilise habituellement de l'acier inoxydable ou du verre. Ce tube creux sera rempli avec une phase stationnaire adaptée aux composés à analyser; elle se présente sous forme de poudre, de granulométrie adéquate. Cette poudre sera maintenue dans la colonne par un support qui doit présenter une surface d'échange optimale entre la phase mobile et la phase stationnaire.

Les qualités auxquelles doivent répondre les phases stationnaires sont principalement l'inertie chimique pour les solutés à séparer, la stabilité thermique et la pureté. Dans le cas où il faut séparer un mélange totalement inconnu, le choix de la phase stationnaire s'avère très difficile, d'autant plus qu'il en existe un nombre considérable. Néanmoins, ce choix est facilité en consultant certaines tables donnant le classement des phases stationnaires en fonction de leurs polarités. Cette classification est due à Rohrschneider.

Il existe un autre type de colonne appelée colonne capillaire, qui est constituée d'un tube d'environ 0,5 mm de diamètre et dont la longueur peut aller jusqu'à plus de 100 mètres. Dans ce type de colonne, la phase stationnaire est constituée par une mince couche $(0,5~\mu\mathrm{m})$ répartie le long de la paroi interne du tube. Ces colonnes présentent le grand avantage d'avoir un pouvoir de séparation élevé ; certains mélanges qu'on ne peut séparer avec des colonnes à remplissage, donneront de très bons résultats sur des colonnes capillaires.

Critères d'analyses

Soit une solution contenant un seul composé; on va obtenir sur l'enregistreur un chromatogramme identique à la figure 8. Nous constatons qu'après l'injection, il y a d'abord le pic dû à l'air, puis, celui correspondant au soluté.

Directement après l'injection, on pourrait aussi trouver un pic dû au solvant contenant l'échantillon. Il est possible avec ce chromatogramme de connaître le temps mis par l'échantillon pour parcourir la colonne chromatographique; ce temps est appelé temps de rétention T_R. En mesurant la distance OA sur un papier, et en connaissant la vitesse V de déroulement de celui-ci, on peut écrire :

 $T_R = OA/V$

De plus, si on a une mesure du débit du gaz vecteur (D) en sortie de colonne, on peut déterminer le volume de rétention $V_{\rm B}$:

 $V_R = D \cdot T_R$

De l'examen d'un chromatogramme, il est possible d'effectuer une analyse quantitative. En effet, la masse de composés est proportionnelle à l'aire du pic et à un terme qui dépend de la sensibilité du détecteur, du gain de l'électronique associée et de la sensibilité de l'enregistreur.

La mesure de l'aire du pic est relativement facile s'il correspond à une courbe de Gauss; dans ce cas, l'aire est donnée par la hauteur H du pic multipliée par sa largeur à mi-hauteur (fig. 8).

Il est également possible de connaître la masse d'un soluté en effectuant le produit de la distance de rétention par la hauteur du pic et par un coefficient de proportionnalité.

On comprendra facilement que des erreurs de mesure seront commises pour des pics non symétriques ou encore si la ligne de base a subi une dérive et n'est plus de ce fait horizontale. De plus, s'il faut examiner un grand nombre de chromatogrammes, on imagine de suite le temps mis pour faire ces calculs.

Pour ces différentes raisons, il est préférable d'employer un intégrateur électronique qui repose sur deux principes, à savoir la détection de seuil ou la détection de pente. Dans le premier cas, on a un déclenchement de l'intégrateur dès que le signal quitte la ligne de base. Malgré un seuil fixé par l'opérateur, ce système pose des problèmes si on a une ligne de base qui dérive, à cause par exemple d'un bruit de fond augmentant en cours d'analyse. Dans le second cas, l'intégrateur entre en action quand la pente de la courbe atteint une certaine valeur choisie d'avance. Cet appareil évite l'inconvénient du précédent et de plus, il peut donner le temps de rétention par le changement de la pente positive en pente négative.

Un tel système peut être couplé à un ordinateur qui peut sortir des résultats tels que le temps de rétention, la surface, et des pourcentages en poids par exemple.

Il est aussi possible en chromatographie d'effectuer une analyse qualitative, c'est-à-dire d'identifier les composés correspondants à chaque pic du chromatogramme.

Le problème de la reconnaissance des pics peut être très ardu dans le cas d'un mélange totalement inconnu; examinons succinctement quelques méthodes d'identification.

On peut en premier lieu utiliser les valeurs du temps de rétention; en effet, ce dernier est caractéristique pour chaque élément, et est donc identique pour des conditions identiques d'analyse. On peut comparer les temps de rétention d'un échantillon et d'une solution témoin.

Une autre méthode est d'utiliser plusieurs détecteurs; en effet, nous avons vu que certains d'entre eux étant sélectifs, l'analyse avec aux moins deux détecteurs de sélectivité différente est un moyen d'identification. Par exemple, un essai sur un détecteur « FID » et thermo-ionique met en évidence des composés phosphorés ou azotés; un essai avec un « FID » et un détecteur à captures d'électrons donnera des pics correspondant à des groupements électrophiles.

Lors de l'identification des pics, il faut prendre certaines précautions ; il est nécessaire d'effectuer l'analyse sur deux colonnes différentes pour pouvoir confirmer les résultats, il faut également rechercher les conditions optimales d'analyse (températures injecteur et détecteur, débits des gaz, sensibilité de l'électronique, etc.). D'autre part, il faut tenir compte qu'un pic peut provenir de plusieurs composés qui ont été captés en même temps; dans ce cas, il faudra effectuer un couplage du chromatographe avec d'autres techniques, comme par exemple la spectrométrie visible et ultraviolet, la résonance magnétique nucléaire, la spectrométrie infrarouge ou encore la spectrométrie de masse. Le couplage des techniques de chromatographie et de spectrométrie de masse (« couplage GCMS) ») sera vu plus en détail à la fin de cet article.

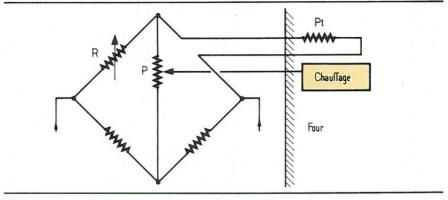


Fig. 11

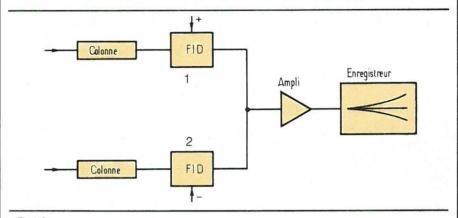
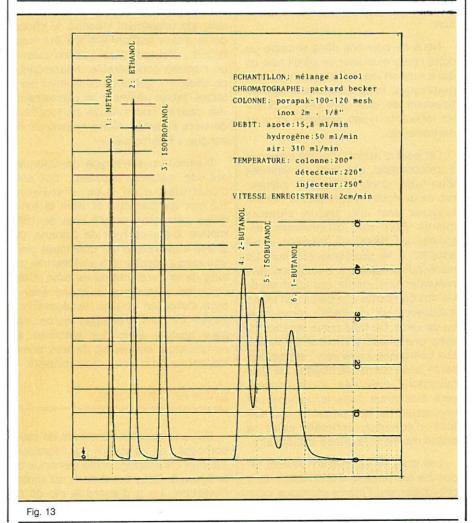



Fig. 12

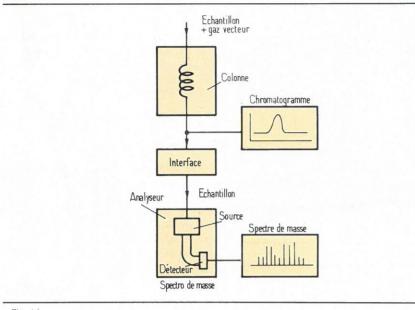


Fig. 14

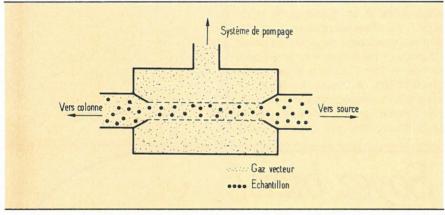
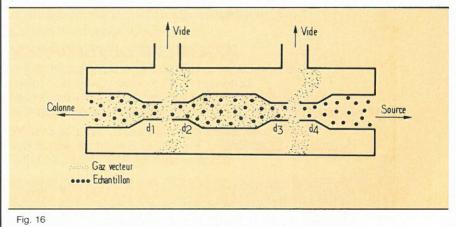


Fig. 15

Pour en terminer avec ce chapitre, examinons un critère d'analyse de la plus haute importance, à savoir la température.

La température du four, et donc du détecteur, peut rester constante pendant tout le temps que dure l'analyse. Cette méthode convient parfaitement pour un échantillon comprenant un nombre limité de composés ne se distinguant pas trop du point de vue température d'ébullition. Si ces composés sont fort éloignés les uns des autres pour chaque soluté, il sera nécessaire de faire plusieurs analyses à des températures différentes, ceci afin de faire sortir tous les composés. On voit immédiatement ici l'inconvénient d'une analyse à température isotherme; c'est la raison pour laquelle on travaille généralement à température programmée. On peut avoir une programmation linéaire ou multi-linéaire. Dans le premier cas, on choisit les températures initiale et finale, ainsi que la vitesse de montée en degrés C/mn (fig. 9).

Dans le cas d'une programmation multi-linéaire, il est possible d'arrêter un certain temps la montée en température et d'obtenir ainsi plusieurs paliers en cours d'analyse. Avec une telle méthode, on obtient un chromatogramme comportant des pics symétriques et d'égales largeurs (fig. 10). La figure 11 montre le principe de la programmation de température; le programmateur prend place dans un


pont de Wheatstone dans lequel deux branches sont variables. Une branche contient l'élément de mesure de température (platine) et l'autre branche contient la résistance R de présélection de la température. S'il n'y a pas équilibre, le dispositif de chauffage est alimenté.

Un autre point ayant rapport avec la température est le problème du bruit de fond; en effet, lorsqu'on monte en température, on peut avoir une décomposition lente de la phase stationnaire, ce qui sensibilise le détecteur. Cela se traduit sur le chromatogramme par une dérive de la ligne de base, ce qui gêne considérablement l'analyse. On évite ce phénomène en utilisant deux colonnes avec deux détecteurs montés de manière différentielle (fig. 12). La dérive positive de la ligne de base du détecteur « 1 » est compensée par la dérive négative du détecteur « 2 »; au total, on obtiendra une ligne de base à peu près horizontale.

La figure 13 montre un exemple de chromatogramme. Il s'agit d'un mélange d'alcool dont les composés sont : pic 1 : méthanol ; pic 2 : éthanol ; pic 3 : isopropanol ; pic 4 : 2-butanol ; pic 5 : isobutanol ; pic 6 : 1-butanol.

Couplage G.C.M.S.

Par couplage GCMS, on entend le couplage entre un chromatographe en phase gazeuse et un spectromètre de masse; cette technique est un des moyens les plus puissants qui nous est offert pour la séparation et l'identification des composés d'un mélange. On comprend l'intérêt de cette méthode, puisqu'en chromatographie en phase gazeuse, plusieurs composés peuvent être pris en compte en même temps. Cela se traduit sur le chroma-

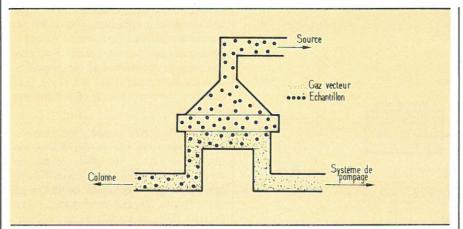


Fig. 17

togramme par un seul pic correspondant à l'ensemble de ces composés. Pour obtenir une séparation complète, les composés arrivant en sortie de colonne seront dirigés vers un spectromètre de masse qui séparera les différents solutés (fig. 14).

La principale difficulté pour coupler ces deux techniques a été la mise au point de l'interface entre le chromatographe et le spectromètre; il a pour but de bloquer le gaz vecteur sortant de la colonne tout en laissant passer l'échantillon vers la source du spectromètre.

Il existe plusieurs types de séparateurs dont la figure 15 donne un premier exemple qui est un séparateur Watson-Biemann. Il consiste en un tube dont la nature est de porosité ultra-fine, enfermé dans une enveloppe reliée à un système de pompage. Les effluents gazeux se partagent en deux courants dont l'un passe à travers le tube pour être finalement pompé, et dont l'autre se dirige vers le spectromètre de masse. La figure 16 montre un « Jet séparateur ». Le principe repose sur les différents degrés de diffusion des gaz quand ceux-ci

passent à travers une restriction. Quand le gaz porteur avec l'échantillon arrive à la restriction « d₁ », il y a une explosion du gaz porteur vers le système de vide, tandis que l'échantillon se dirige vers la source du spectromètre de masse.

On améliore le processus en effectuant une deuxième séparation entre les restrictions « d₃ » et « d₄ ».

Un dernier type de séparateur est montré à la figure 17, qui est un dispositif à membrane. Dans ce cas, il y a une diffusion préférentielle des échantillons gazeux à travers une membrane semi-perméable, tandis que le gaz porteur continue sa course vers un système de pompage.

M. Lacroix

Soyez bien!

Soyez bien, tout simplement comme les **femmes et les hommes** passionnés par l'informatique et qui intègrent Digital, le deuxième groupe informatique mondial.

Ils sont bien parce qu'ils trouvent chez Digital une communication facile, le goût du dialogue, le sens de l'efficacité et une prise en compte de leurs aspirations...

Ils sont bien parce qu'ils travaillent dans un environnement professionnel ouvert, avec des gammes de produits performants (plus de 11% du C.A est consacré à la Recherche et au Développement) et parce qu'ils prennent part à des projets d'entreprise particulièrement dynamiques.

Ingénieur Electronicien, rejoignez l'équipe de développement de notre centre de réparation...

Soyez bien : vous avez plusieurs années d'expérience dans le test et le dépannage de cartes électroniques sur testeurs.

Nous vous proposons le poste d'

INGENIEUR DEVELOPPEMENT

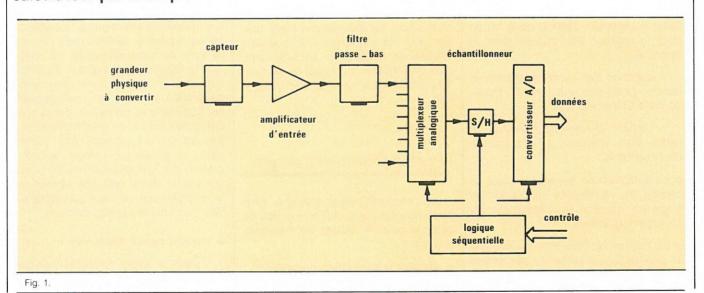
Votre mission sera de créer et développer des processus de test pour cartes mémoires sur testeur fonctionnel et d'implanter ces processus dans nos Centres Européens de Réparations. Les contacts avec les US et les pays d'Europe nécessiteront une bonne pratique de l'anglais.

Soyez bien, prenez contact avec Jean-Loup HRYCENKO - REF. EA1 DIGITAL EQUIPMENT FRANCE - Centre de Réparations : 11, Av. Joliot Curie, Z.I. Bois de l'Epine B.P. 202, 91007 EVRY.

N° 2 mondial de l'informatique

digital

SERVICE-LECTEURS Nº 45



Les systèmes d'acquisition de données

Les systèmes d'acquisition de données et de conversion sont utilisés dans les domaines les plus divers, notamment dans les applications industrielles, médicales, spatiales, etc. Ils constituent le plus fréquemment des interfaces avec des ordinateurs ou avec des dispositifs d'enregistrement. Leurs principales caractéristiques sont la vitesse et la précision des mesures effectuées, le nombre de canaux échantillonnés et leur isolement.

La structure d'ensemble d'un système d'acquisition de données à n canaux d'entrée est représentée à la figure 1. On y trouve :

- un capteur spécifique à chaque entrée suivant la grandeur physique à mesurer,
- un préamplificateur différentiel d'entrée propre à chacun des n canaux,
- une cellule de filtrage,
- un étage de multiplexage comportant également y voies groupées par 8 ou 16,
- un amplificateur du type « échantillonneur-bloqueur » (« S/H »),
- le convertisseur analogique-digital proprement dit (« ADC »),
- le dispositif de contrôle permettant la sélection d'une voie déterminée, la commande d'échantillonnage puis la conversion, le transfert du produit de la digitalisation vers un calculateur par exemple.

Le capteur

Le capteur est le premier élément de la chaîne d'acquisition. Il est chargé de la conversion en un signal exploitable, suivant une loi connue S = f(E), de toute quantité, propriété ou condition physique que l'on désire déterminer.

De ses propriétés dépendent essentiellement :

- la précision ultime de la chaîne de mesure,
- la complexité des circuits associés chargés de la transmission du signal.

Pour établir un choix correct d'un capteur particulier, il convient de connaître, outre sa nature et son principe physique de fonctionnement, quelques spécifications techniques d'emploi. Certaines d'entre elles ont une répercussion immédiate sur la qualité et la conception de la chaîne de mesure. Nous retenons :

- L'étendue de mesure. L'amplitude du signal applicable à l'entrée du capteur est limitée. En effet, la limite supérieure provient soit d'un risque de détérioration, soit de l'apparition d'une distorsion du signal transmis. La limite inférieure est fixée par l'importance relative du bruit et l'existence éventuelle d'un seuil provenant de la construction même du dispositif.
- La constante de temps. C'est une caractéristique importante car certains capteurs sont très lents.
- L'impédance d'entrée. La présence du capteur ne doit pas entraîner de modification appréciable de la grandeur mesurée. Cela exige que son impédance d'entrée soit appropriée à l'impédance interne de la source. Cette adaptation dépend de la façon dont le capteur est introduit dans le système:
- capteur de variable extensive (force, pression, tension...): impédance d'entrée élevée,
- capteur de variable intensive (vitesse, flux, intensité...): impédance d'entrée faible.
- La fonction de transfert : c'est la courbe de l'amplitude du signal de sortie en fonction de l'amplitude du paramètre d'entrée.
- Le pouvoir de résolution : il désigne la plus petite variation du paramètre d'entrée qui donne lieu à une variation mesurable du signal de sortie.

- La fidélité. C'est l'aptitude du capteur à reproduire consécutivement le résultat correspondant à une même mesure dans des conditions identiques de fonctionnement et d'ambiance.
- La stabilité. C'est l'aptitude du capteur à conserver s'es performances à long terme.
- Le niveau de sortie. Dans de nombreux cas, le niveau énergétique du signal de sortie d'un capteur est très faible et celui-ci doit être immédiatement suivi d'un amplificateur.

Les principaux phénomènes physiques utilisés

On distingue tout d'abord des phénomènes physiques générateurs de tension électrique.

- Effet piézo-électrique: si un quartz, taillé suivant certains axes, est soumis à l'action d'une force qui tend à le déformer, on peut recueillir des charges électriques sur des armatures métaliques convenablement disposées.
- Effet thermoélectrique : la soudure de deux métaux différents, en général le fer et le constantan, est le siège d'une force électromotrice sensiblement proportionnelle à l'élévation de température ΔT .
- Effet photoélectrique: une énergie lumineuse frappant une couche photosensible provoque la libération d'une certaine quantité d'électrons que l'on recueille sur un collecteur (cellule photoémissive). Dans le tube photomultiplicateur, ce faible courant d'électrons est amplifié par émissions secondaires sur des anodes dont le potentiel va en croissant.

A ces effets physiques fondamentaux parmi les plus couramment utilisés pour les capteurs, il faut ajouter l'utilisation d'éléments passifs variables en fonction d'une action particulière (résistance, self-induction, capacité...).

Le préamplificateur d'entrée

Le préamplificateur d'entrée, propre à chaque canal doit être conçu de façon à pouvoir remplir les fonctions suivantes:

Assurer la protection du système

Il s'agit là, semble-t-il, de la fonc-

tion la plus importante du préamplificateur et elle justifie sa présence, même lorsque le gain est unitaire. En effet, les étages de multiplexage et de conversion qui suivent (fig. 1) sont généralement des éléments à structure MOS, protégés des signaux parasites dont les amplitudes n'excèdent quère 15 V (selon les types, cette valeur peut être supérieure et atteindre 35 V par exemple). Cependant, lorsque les distances entre les capteurs proprement dits et le système d'échantillonnage sont importantes, des signaux parasites permanents ou se présentant sous forme de transitoires, d'amplitudes nettement supérieures à 15 V, peuvent apparaître et endommager l'ensemble du système de multiplexage, voire le convertisseur luimême. Pour éviter cela, les préamplificateurs seront de préférence du type à isolation galvanique, de sorte qu'une perturbation ou une tension de mode commun trop élevée ne puissent endommager le système.

Assurer une adaptation d'impédance

Le dispositif de multiplexage proprement dit opère à des cadences de l'ordre de 100 kHz, voire plus. Par conséquent, l'impédance de la ligne de transmission directement connectée à ce dispositif introduira une erreur dans la scrutation et ce, d'autant plus que cette ligne est plus longue. D'autre part, lorsque des signaux de mode commun doivent être pris en considération, ce qui est souvent le cas, le premier étage de multiplexage doit opérer selon le mode différentiel si des préamplificateurs d'entrée ne sont pas prévus : chaque interrupteur doit alors être dédoublé. La présence de préampliicateurs d'entrée permet d'éliminer ces deux désavartages : la bande passante utile des préamplificateurs est nettement inférieure à la cadence de scrutation, et. d'autre part, comme ils sont du type différentiel, ils assurent la réjection des signaux de mode commun. Il s'ensuit que l'impédance de source vue par les multiplexeurs est très faible et est définie par l'impédance de sortie du préamplificateur; par ailleurs, ils peuvent être utilisés selon le mode dit « single ended ». c'est-à-dire que chaque voie ne devra comporter qu'un seul interrupteur car le multiplexage ne sera pas différentiel, d'où l'avantage économique.

Fixer la bande passante

Il s'agit d'opérer de façon à ce que les techniques de l'échantillonnage soient applicables.

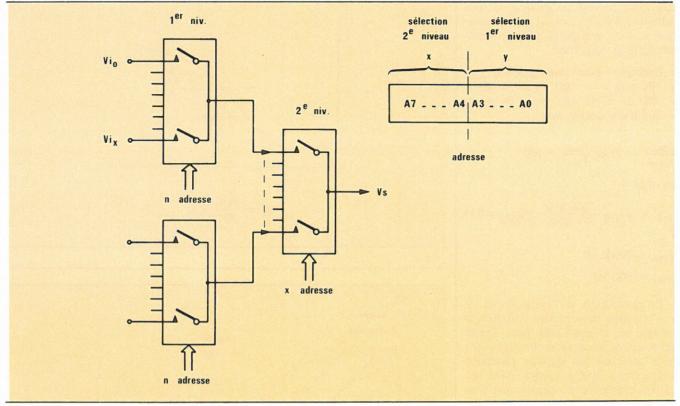


Fig. 2.

Amplifier les signaux différentiels utiles

Cette amplification doit se faire avec la précision adéquate, de sorte qu'à pleine gamme, les multiplexeurs et les convertisseurs opèrent à des niveaux de \pm 5 V \pm 10 V qui sont les valeurs usuelles.

Assurer la réjection des signaux de mode commun

Il faut que ces derniers donnent lieu à une erreur relative ϵ vérifiant :

$$\left| \begin{array}{c} \frac{\mathsf{V}_{\mathsf{CM}}}{\mathsf{CMRR}} \right| \leqslant \left| \epsilon \times \mathsf{FS} \right| \text{ , ou} \\ \\ \left| \begin{array}{c} \frac{\mathsf{V}_{\mathsf{CM}}}{\mathsf{CMRR}} \right| \leqslant \left| \epsilon \times \frac{(\mathsf{A.FS})}{\mathsf{A}} \right| \\ \end{array}$$

où:

- FS représente la pleine échelle à l'entrée, pour les signaux différentiels;
- A est le gain différentiel, de sorte que A.FS soit de l'ordre de \pm 10 V ;
- V_{CM} est le signal de mode commun maximal, de l'ordre de $\pm\,$ 10 V également ;
- CMRR est le taux de réjection en mode commun qui vaut donc au moins :

$$CMRR_{min} \simeq \frac{A}{\epsilon}$$

soit

$$20 \log_{10} \left| \frac{A}{\epsilon} \right|$$
 (en dB).

Pour A = 1 et ϵ = 10⁻⁴, le CMRR doit donc être supérieur à 80 dB, valeur relativement aisée à obtenir. Cependant, il existe bien des cas particuliers où le gain est nettement plus élevé, surtout lorsque des capteurs sont directement reliés au système d'acquisition. Dans ce cas, on est amené à utiliser des circuits d'entrée nettement plus sophistiqués, du type à anneau de garde par exemple, et des amplificateurs plus performants en ce qui concerne certaines caractéristiques (bruit, dérives, linéarité...).

Les filtres

Il est évident que les signaux analogiques doivent avoir une amplitude limitée à ± FS. De plus, il s'agit d'un système qui procède par échantillonnage et le théorème fondamental suivant doit être vérifié :

« Pour que le message contenu dans un signal soit récupérable après échantillonnage, il faut que ce dernier opère à une cadence au moins double de la composante fréquentielle la plus élevée du signal. »

Ainsi, si la cadence de scrutation vaut 1/T et le nombre de canaux dis-

tincts n, les signaux d'entrée ayant tous un spectre fréquentiel limité à f_{max} , cela conduit à la condition :

$$nf_{max} < \frac{1}{2T}$$

en admettant que les n canaux soient tous échantillonnés séquentiellement sur une période nT.

Exemple: pour 1/T = 100 kHz et n = 256, les spectres fréquentiels des signaux d'entrée doivent être limités à :

$$f_{max} \leqslant \frac{100 \text{ kHz}}{2 \times 256} \simeq 200 \text{ Hz}$$

Pratiquement, les signaux auront des spectres fréquentiels très différents, de sorte que ceux qui ont les spectres les plus larges doivent être échantillonnés plus souvent que ceux dont le spectre est très limité. Considérons par exemple que les signaux puissent être subdivisés en trois groupes : n_1 , n_2 , n_3 , ayant des spectres limités à f_{1max} , f_{2max} et f_{3max} , respectivement avec $n_1 + n_2 + n_3 = n$, $f_{1max} < f_{2max} < f_{3max}$. Toujours en considérant une scrutation séquentielle, cela équivaut à échantillonner :

$$n^{\star} = n_1 + \frac{f_{2max}}{f_{1max}} \cdot n_2 + \frac{f_{3max}}{f_{1max}} \cdot n_3,$$

canaux dont les signaux ont un spectre limité à f_{1max} . Autrement dit, sur une période n* T, chaque voie du groupe n_1 sera échantillonnée une

fois, chaque voie du groupe n_2 sera échantillonnée f_{2max}/f_{1max} fois et chaque voie du groupe n_3 sera échantillonnée f_{3max}/f_{1max} fois.

Exemple: pour une cadence 1/T = 100 kHz, n_1 = 100, n_2 = 100 et n_3 = 56, de sorte que n_1 + n_2 + n_3 = 256 d'une part et avec :

$$\frac{f_{2\text{max}}}{f_{1\text{max}}} = 10 \text{ et } \frac{f_{3\text{max}}}{f_{1\text{max}}} = 100,$$

on obtient:

$$f_{1max} < \frac{100 \text{ kHz}}{2 (100 + 1000 + 5600)} \le 8 \text{ Hz}$$

 $f_{2max} < 80$ Hz, et

 $f_{3max} < 800 Hz$

En conclusion, on voit que des filtres d'entrée doivent être introduits à l'entrée de chaque voie pour limiter les spectres fréquentiels et également pour atténuer les signaux parasites susceptibles d'être captés dans les câbles d'amenée du signal utile. Par ailleurs, il est clair que cette limitation conduit à augmenter la cadence de scrutation au fur et à mesure que le nombre de voies à scruter est plus élevé.

Le multiplexeur analogique

Un multiplexeur de tensions analogiques doit présenter sur son unique sortie l'une des N tensions appliquées à ces N entrées. Cette transmission s'effectue avec une certaine qualité et la voie à sélectionner est désignée au moyen d'une adresse binaire. Un multiplexeur analogique est donc constitué de la manière suivante : un ensemble de N interrupteurs, électromécaniques (lents) ou électroniques, qui sont reliés à un même point (la sortie) à la suite duquel un amplificateur d'adaptation peut être éventuellement placé.

Caractéristiques des multiplexeurs

Un multiplexeur analogique présente donc des caractéristiques qui sont essentiellement déterminées par les interrupteurs et l'amplificateur A:

- la linéarité du rapport $V_{\text{S}}/V_{\text{e}}$ (tension de sortie sur tension d'entrée) en fonction de l'amplitude de ces signaux,
- la précision du gain V_S/V_e,

Fig. 3.

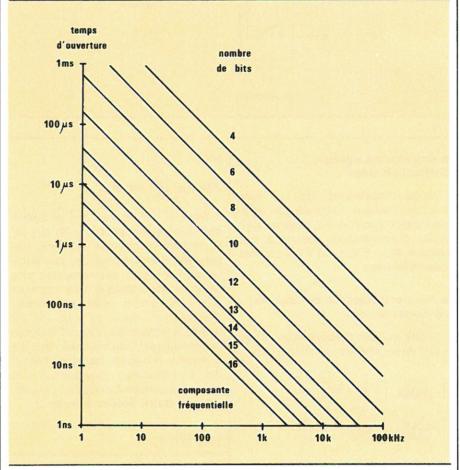


Fig. 4.

- la tension de décalage V_{os} présente en sortie, lorsque toutes les entrées sont au potentiel de référence,
- le coefficient de température de V_{os} : Δ $V_{os}/\Delta T$,
- la vitesse de balayage en sortie : $\Delta V_S/t$ (en $V/\mu s$),
- le temps de réponse pour que la tension de sortie passe de la valeur V_{max} à + V_{max} avec une précision donnée,
- la réjection du mode commun (en montage différentiel),
- le courant d'entrée et la résistance série présentée par un interrupteur à l'état passant (ON),
- l'impédance d'entrée, ou le courant de fuite, pour un interrupteur à l'état bloqué (OFF),
- l'isolement entrée-sortie procuré par voie bloquée (« cross channel coupling », « crosstalk », « OFF isola-

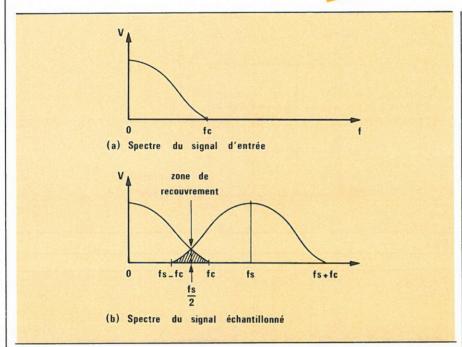


Fig. 5.

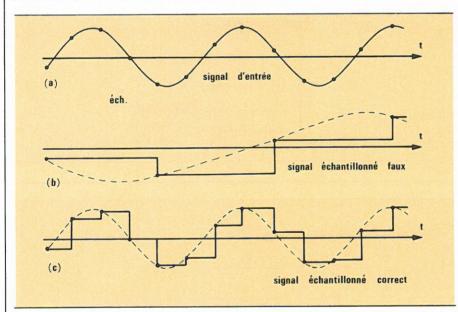


Fig. 6.

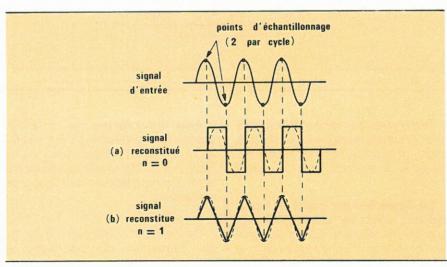


Fig. 7.

tion », etc.) qui est égal au rapport V_{sd}/V_{eM} (ou 20 log V_{sd}/V_{eM}), V_{sd} étant la tension résiduelle présente en sortie due à l'application d'une tension V_{eM} appliquée à l'entrée d'une voie bloquée. La tension V_{eM} a généralement l'amplitude maximum et une fréquence déterminée (par exemple 20 V sinusoïdaux 1 MHz).

Extension de la capacité

En utilisant plusieurs modules tels que X multiplexeurs à N voies, on peut atteindre de grandes capacités. Néanmoins, il faut observer que si N interrupteurs convergent vers le même point de sortie, il y aura à ce point N capacités en parallèle et N courants de fuite. Les performances en rapidité, stabilité et bruit seront donc assez mauvaises (pour N grand). Pour améliorer ces performances, on procède à un multiplexage à 2 niveaux.

L'organisation du multiplexeur pour $2^n + x$ voies est celle représentée à la figure 2. Le premier niveau est constitué de X multiplexeurs de N voies (N = 2^n , X = 2^x) et délivre donc X sorties pour X.N entrées. Le deuxième niveau doit donc multiplexer 1 parmi les X sorties du premier niveau. L'adresse d'une voie parmi les X.N est composée de x + n bits, les bits de poids faible étant décodés par le 1^{er} niveau.

Remarque:

Lors d'un changement d'adresse, il se peut que deux commutateurs soient fermés simultanément lors d'une transition, ce qui a pour effet de mettre en relation les deux signaux d'entrée.

Pour pallier ce défaut, il y a lieu d'inhiber l'entrée validation du décodeur, lors d'un changement d'adresse, pendant la durée de la transition (généralement $< 1 \mu s$).

Echantillonnage

et mémorisation

Un convertisseur A/D réalise les traitements du signal d'entrée en un laps de temps déterminé dépendant de la méthode de conversion utilisée. La vitesse de conversion requise dans une application particulière dépend de la variation du signal d'entrée pendant que la conversion s'effectue.

Dans le cas général, le signal analogique V présente une forme quelconque d'évolution dans le temps V(t): il est composé d'un nombre plus ou moins grand de composantes sinusoïdales (spectres du signal f(t)).

Le temps requis pour effectuer le traitement du signal d'entrée s'appelle le « temps d'ouverture » ta (fig. 3).

Pendant ce laps de temps, on peut considérer que le signal à convertir produit une variation Δv qui sera fonction du temps de montée de ce signal.

Si l'on considère, par exemple, une fonction sinusoïdale, la variation d'amplitude maximale est obtenue lorsque la sinusoïde passe par 0 et l'on peut écrire:

$$\Delta V = \frac{d (V \sin \omega t) t = 0}{dt} \times ta = V \omega ta.$$

d'où

$$\frac{\Delta V}{V} = \omega \text{ ta} = 2 \pi \text{ f. ta.}$$

A partir de cette équation, déterminons par exemple le temps d'ouverture maximum permettant de convertir un signal sinusoïdal à 1 kHz, d'amplitude 1 V, avec une précision de 1 %, soit Δ V < 1 mV.

Ainsi.

$$ta < \frac{10^{-3}}{2 \pi 10^3} = 160.10^{-9} s,$$

soit 160 ns!

Cet exemple met en évidence le fait que, si les variations du signal d'entrée sont rapides, il est nécessaire d'utiliser un convertisseur A/D ultrarapide et par conséquent coûteux; une solution économique consiste donc à employer un dispositif d'échantillonnage à l'entrée d'un convertisseur A/D de vitesse moyenne.

L'échantillonneur permet de réduire de manière appréciable le temps d'ouverture du système, car son temps d'acquisition est relativement court.

Il doit, en outre, maintenir constante la valeur échantillonnée pendant toute la durée de la conversion.

Le graphique de la figure 4 donne le temps d'ouverture en fonction de la composante fréquentielle du signal d'entrée pour différentes résolutions.

Ainsi, si la composante d'entrée est de 100 Hz et que la résolution est de 12 bits, le temps d'ouverture est limité à 400 ns.

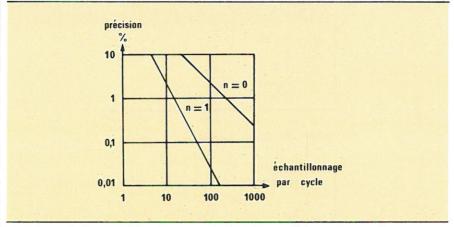


Fig. 8.

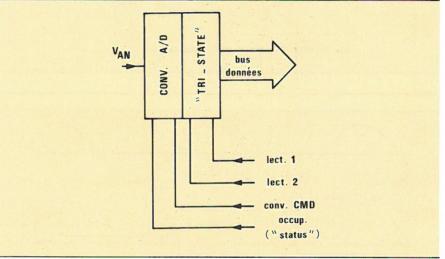


Fig. 9.

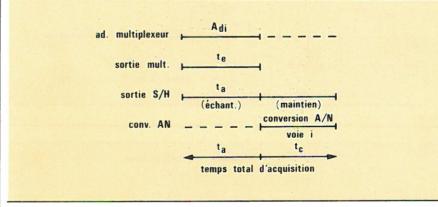


Fig. 10.

L'intervalle de temps T séparant deux échantillonnages successifs sera choisi en fonction des plus hautes fréquences présentes dans le signal d'entrée.

La figure 5-a représente un signal d'entrée, avec sa composante fréquentielle limitée à f_c. Quand ce signal est échantillonné à une fréquence f_s, la composante de modulation résultante a l'allure de la figure 5-b.

Ainsi on constate que si la fréquence d'échantillonnage est insuffisante, certaines composantes haute fréquence du signal utile se recoupent avec la zone inférieure du spectre de modulation.

Ce mode de fonctionnement provoque l'apparition de distorsions ne pouvant pas être séparées ou distinguées du signal original.

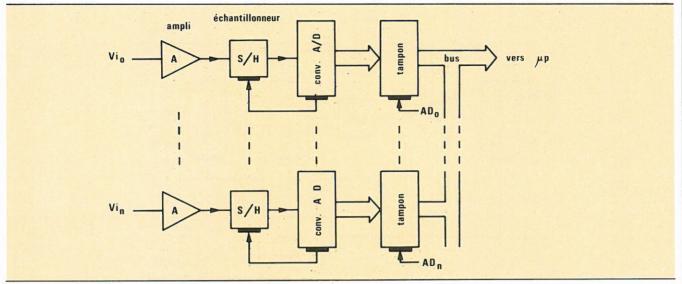


Fig. 11.

En choisissant une fréquence d'échantillonnage $f_s-f_c>f_c$ ou, en d'autres termes, en imposant $f_s>2f_c$, le phénomène n'a pas lieu.

Si la cadence de scrutation est imposée, il est nécessaire de fixer la composante f_c maximale au moyen d'un filtre adéquat.

L'intervalle de temps T séparant deux échantillonnages successifs sera choisi en fonction des plus hautes fréquences présentes dans le signal utile. La figure 6 présente deux cas d'échantillonnage pour une sinusoïde.

En (b), la fréquence d'échantillonnage n'est pas suffisante et l'information après échantillonnage ne permet pas la reconstitution du vrai signal, même après filtrage. En (c), la fréquence est supérieure au double de la fréquence à échantillonner et un filtrage permettra de reconstituer l'information vraie.

En fait, la scrutation doit s'effectuer à une cadence telle que la condition T.signal/ $2 \le T$.éch. est remplie.

Le nombre d'échantillonnages par cycle dépend de l'éventuel mode de reconstitution du signal, de l'utilisation de ce dernier et de l'erreur tolérée sur la valeur moyenne.

Pour illustrer l'erreur due à l'échantillonnage, considérons le cas d'un signal sinusoïdal où le nombre d'échantillonnages est de 2. La reconstitution de ce signal s'effectue en prélevant directement la variable issue du convertisseur D/A (ordre 0).

Comme le montre la figure 7-a, la surface d'une demi-période du signal reconstitué $(T/2 \times E_M)$ diffère du si-

gnal original (T/2 \times E_M/ π), d'où une erreur de \simeq 32 %.

Si l'on utilise un filtre du 1^{er} ordre (fig. 7.b), l'erreur se réduit à 14 %.

Plusieurs procédés permettent de réduire l'erreur sur la valeur moyenne du signal échantillonné :

- augmentation du nombre d'échantillonnages par cycle,
- utilisation d'un filtre passe-bas avant multiplexage,
- filtrage à la sortie du convertisseur D/A.

Comme le met en évidence la figure 8, l'erreur sur la valeur moyenne diminue très rapidement pour un léger accroissement du nombre d'échantillonnages.

Ainsi, pour une reconstitution avec filtre du 1er ordre, l'erreur est de 10 % pour $f_s=4\,f_c$ et tombe à 1 % pour $f_s=15\,f_c$.

Remarques:

- (1) En règle générale, l'échantillonneur bloqueur se place entre le multiplexeur analogique et le convertisseur A/D, et il n'y en a donc qu'un pour x voies. Toutefois, si plusieurs phénomènes rapides sont analysés et s'il est primordial que les différents échantillons soient prélevés au même instant précis, chaque voie analogique sera équipée d'un échantillonneur. La conversion A/D sera ensuite assurée soit par x convertisseurs fonctionnant simultanément, soit plus généralement par un seul convertisseur A/D précédé d'un multiplexeur analogique.
- (2) Dans certaines applications, on est conduit à prélever un échantillon très rapidement, par exemple en 1 μ s, ce qui impose l'utilisation d'une mémoire analogique très rapide. Mais il lui sera alors très difficile de présenter un très bon taux de perte (droop rate).

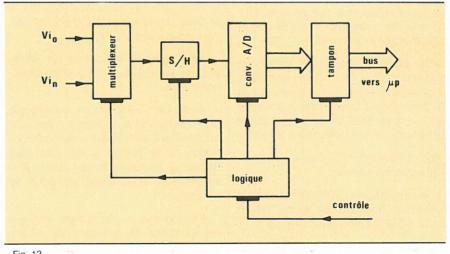


Fig. 12.

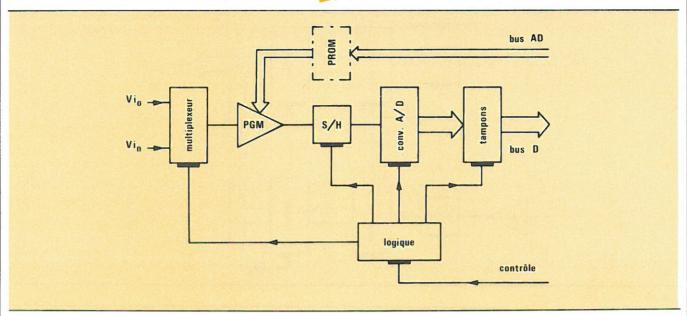


Fig. 13.

Dans le cas où l'échantillon est exploité dans les quelques dizaines de microsecondes qui suivent (cas d'une conversion A/D), ceci n'a aucun inconvénient. Par contre, si l'utilisation qui exploite cet échantillon évolue lentement tout en présentant une très grande sensibilité, il est intéressant de faire suivre cette mémoire rapide d'une deuxième plus lente, mais qui pourra présenter un taux de perte bien meilleur (elle aura une capacité de stockage plus grande).

Ainsi, la mémoire rapide pourra présenter un temps d'acquisition de $1 \mu s$ et un taux de perte de 1 mV/ms et la deuxième mémoire un temps d'acquisition de $100 \mu s$ et un taux de perte de 1 mV par seconde.

Le convertisseur A/D

La conversion du signal analogique issu de l'échantillonneur est opérée par approximations successives plutôt que par intégration ou par comptage d'incréments calibrés.

On obtient ainsi une durée de conversion fixe, plus courte que dans les autres modes mentionnés, et la résolution reste très bonne (par exemple : pour un ADC de 12 bits, la durée de conversion est inférieure à $20~\mu s$).

Le traitement du signal d'entrée s'effectue comme suit :

- Le convertisseur A/D commence la conversion lorsqu'il en reçoit l'ordre par le signal CONV. CMD (fig. 9).
- Dès que la conversion est en cours, une information « STATUS » indique à

la logique de contrôle que le convertisseur D/A est occupé à traiter une information.

Lorsque la conversion est terminée, la retombée de STATUS signifie que le mot numérique est disponible.

Ce mot peut être chargé sur le bus en 2 octets, par les ordres de lecture LECT 1 et LECT 2, agissant sur des portes « tristate ».

La logique de contrôle

La logique de contrôle établit une séquence programmée destinée à la commande séquentielle du multiplexeur d'entrée, de l'échantillonneurbloqueur et du convertisseur A/D.

Cette logique est elle-même gérée soit par un microprocesseur, soit par l'unité de traitement.

Les séquences réalisées par cette logique sont les suivantes (fig. 10). A la suite d'une demande d'information concernant une voie i :

- adressage et validation du multiplexeur (voie i). Le temps d'établissement est t_e;
- prise de l'information analogique par l'échantillonneur-bloqueur. Ce temps d'acquisition est t_a (échantillonnage). Si le temps t_a est très petit devant t_e, l'échantillonneur pourra être simplement commandé au bout du temps t_e;

Par contre, si les temps sont du même ordre de grandeur et s'il importe de ne pas perdre de temps, les deux circuits pourront fonctionner simultanément, avec éventuellement un léger retard pour l'échantillonneur.

– fin d'échantillonnage signalée au convertisseur D/A: début de la conversion A/D. L'échantillonneur est maintenant en position « maintien », jusqu'à la prochaine commande. Le temps de conversion est t_c . Au bout de ce temps, le signal « fin de conversion » indique que l'information numérique N_i est disponible et peut être transmise à l'unité de traitement ou de mémorisation. Le temps total de l'opération est donc $t_e + t_c$ au moins.

Les techniques d'acquisition

Les systèmes d'acquisition peuvent être classifiés en deux grandes catégories: ceux destinés à opérer dans un environnement peu sévère(laboratoires) et ceux opérant dans un environnement hostile (équipements embarqués, matériels industriels, équipements militaires, etc.).

Sont inclus dans la dernière catégorie, tous les équipements devant fonctionner dans un milieu électriquement perturbé, tels que les centrales électriques, le matériel roulant, etc.

Dans les équipements de laboratoire où il est fait usage de matériel très sophistiqué, les critères de choix seront principalement la précision et la vitesse du système; par contre, pour les systèmes fonctionnant dans un milieu parasité, les critères de choix seront plutôt l'isolation galvanique et le taux de réjection en mode commun.

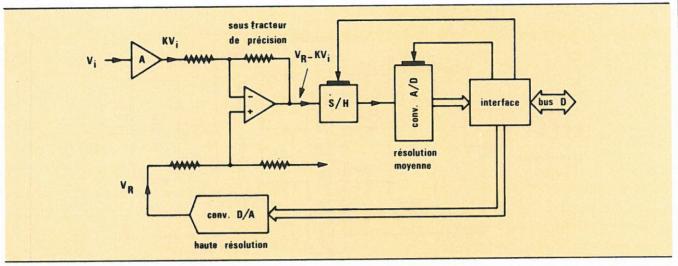


Fig. 14.

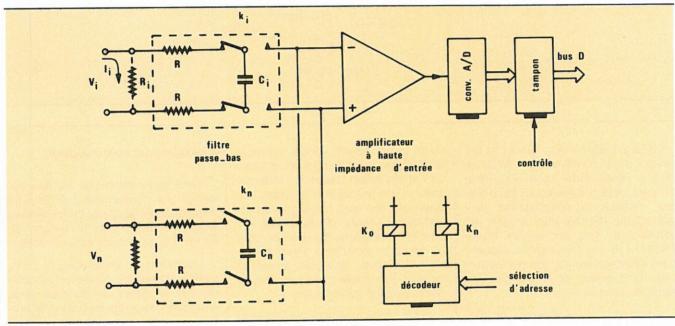


Fig. 15.

Critères de choix

Pour une application déterminée, la sélection d'un système d'acquisition s'établit en fonction d'un certain nombre de critères, notamment :

- la résolution et la précision,
- le nombre de canaux à traiter,
- la vitesse d'échantillonnage par canal,
- la réjection de mode commun,
- l'isolation entre canaux et par rapport à l'unité de conversion,
- l'utilisation d'un amplificateur à sélection de gain,
- le coût du système.

Compte tenu de ces différents critères, nous allons examiner certaines configurations, lesquelles mettent en évidence un critère préférentiel.

Premier cas : la vitesse est le critère de choix

La première méthode consiste à utiliser un convertisseur A/D individuel par canal (fig. 11). Etant donné le prix relativement réduit des convertisseurs A/D, cette méthode est compatible au point de vue prix, pour des résolutions de 8-10 bits.

Elle présente, en outre, l'avantage – pour certaines applications – de permettre l'échantillonnage synchrone des différents canaux.

Une autre solution, plus classique, consiste à utiliser un multiplexeur analogique associé à un échantillonneur unique (fig. 12). Afin de réduire le temps de scrutation, le multiplexeur peut être aiguillé sur le canal N+1 pendant que le convertisseur traite le canal N contenu dans l'échantillonneur.

Cette technique réduit le temps de scrutation en éliminant le temps de commutation du sélecteur d'entrée.

Deuxième cas : la dynamique est le critère de choix

Deux possibilités peuvent nécessiter l'utilisation d'un conditionneur d'entrée : la première lorsque les signaux à traiter ont une grande disparité dans leurs variations maximales (par exemple : 10 mV à 10 V); la seconde lorsqu'il s'avère nécessaire de mesurer une faible variation par rapport à une constante.

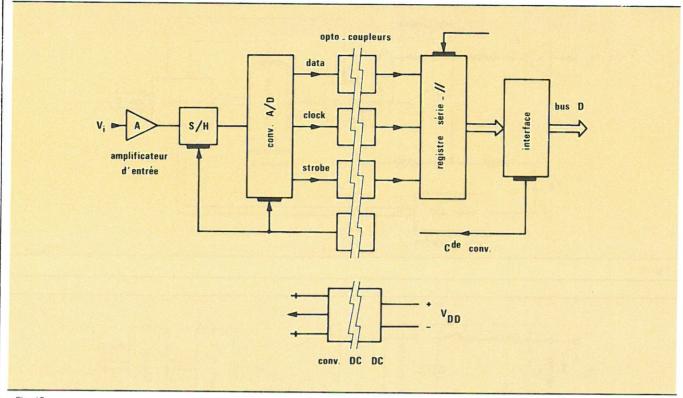


Fig. 16.

Dans le premier cas, il peut être fait usage d'un convertisseur A/D de haute résolution (par exemple 16 bits), mais il s'avère plus économique d'utiliser un amplificateur programmable (fig. 13) dont le gain est sélectionné soit au moyen d'une PROM, soit par une logique séquentielle sélectionnant la gamme appropriée en fonction de la grandeur du signal à convertir.

Lorsqu'on désire mesurer de manière précise une faible variation autour d'une valeur fixe, le circuit de la figure 14 s'avère particulièrement intéressant. Dans ce circuit, un convertisseur D/A de haute résolution génère la constante V_R . Cette valeur est ensuite soustraite au signal d'entrée amplifié KV_i , de sorte que le convertisseur A/D voit, à son entrée, la valeur V_R — KV_i . Cette nouvelle valeur, représentative du Δv à mesurer, peut ainsi être traitée à partir d'un convertisseur A/D de modestes performances.

Troisième cas : l'isolation galvanique est le critère de choix

Lorsque les capteurs sont issus de milieux hautement perturbés, il est nécessaire de protéger les entrées contre ces perturbations; de plus, une tension de mode commun élevée risque d'entacher sérieusement la précision de la mesure ; enfin, certaines applications exigent que les différentes entrées soient totalement indépendantes l'une par rapport à l'autre. Ces considérations sont telles qu'il est de pratique courante d'utiliser des circuits d'entrées à haute isolation pour les capteurs industriels. Pour réaliser cette isolation, plusieurs procédés peuvent être utilisés : relais, opto-coupleurs, ampli d'isolation, etc.

Nous allons examiner les possibilités des différents systèmes.

• Isolation par relais Reed

Lorsque la vitesse de scrutation n'est pas un élément fondamental, la technique dite du « condensateur volant » (fig. 15) présente de nombreux avantages notamment en ce qui concerne la réjection du mode commun (≥ 120 dB), ainsi que l'excellente isolation de l'unité de traitement par rapport à la source (1 à 2 kV eff. suivant le type de relais).

De plus, l'utilisation de relais Reed au mercure permet de traiter des signaux de faible amplitude avec une erreur de mesure pratiquement négligeable.

Avec des relais garantissant 10¹⁰ opérations et une vitesse de scrutation de 100 points/seconde, la fiabilité d'un tel système est d'environ 3 ans.

Isolation par opto-coupleur

Dans cette technique, les données issues du convertisseur A/D sont transférées en série par l'intermédiaire d'opto-coupleurs dans un tampon effectuant la conversion série-parallèle.

L'isolation est excellente (≥ 2 kV), mais la vitesse de scrutation est altérée par le temps du transfert série, limité par l'immunité au bruit et la protection contre les perturbations des photo-coupleurs.

Dans cette configuration, la vitesse de scrutation est de 1 000 à 5 000 points/seconde.

Il est à remarquer que le convertisseur A/D nécessite une source d'alimentation individuelle, elle aussi à haute isolation, ce qui grève lourdement le prix de revient pour un nombre d'entrées important.

Par contre, la précision ne sera limitée que par les performances propres du convertisseur (fig. 16).

Isolation par amplificateur individuel

Les performances des amplificateurs à isolation actuels, la réduction de leur encombrement, ainsi que leur coût, permettent leur utilisation dans les systèmes exigeant une haute isola-

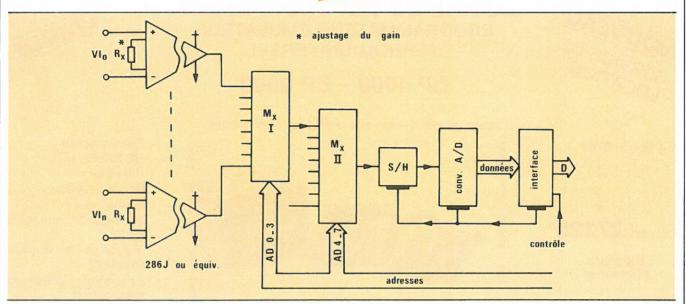


Fig. 17.

tion tout en maintenant une vitesse de scrutation relativement élevée.

Cette technique permet d'obtenir une haute isolation des entrées (≥ 2 kV), une réjection en mode commun de l'ordre de 100 dB avec une altération de la linéarité de \pm 0,05 % et un coefficient de température de \pm 75 ppm/°C.

De plus, l'amplificateur permet

d'adapter judicieusement le gain de chacune des entrées, permettant de traiter ainsi les signaux issus de capteurs ayant des sensibilités différentes (fig. 17).

Dans cette configuration, il est possible d'atteindre des vitesses de scrutation de l'ordre de 100 000 points/s.

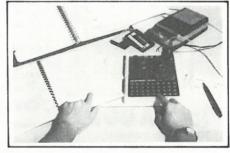
Ch. Burniaux

Bibliographie

- [1] Principles of data acquisition, note d'application AN-79. Burr Brown.
- [2] Principles of data acquisition, doc. Datel.
- [3] Analog Digital conversion notes, doc. *Analog Devices*
- [4] D/A and A/D conversion handbook, *Motorola*.

Des bons métiers où les jeunes sont bien payés

INFORMATIQUE


B.P. Informatique diplôme d'Etat. Pour obtenir un poste de cadre dans un secteur créateur d'emplois. Se prépare tranquillement chez soi avec ou sans Bac en 15 mois environ.

Cours de Programmeur, avec stages pratiques sur ordinateur.

Pour apprendre à programmer et acquérir les bases indispensables de l'informatique. Stage d'une semaine dans un centre informatique régional sur du matériel professionnel. Durée 6 à 8 mois, niveau fin de 3°.

MICRO-INFORMATIQUE

Cours de BASIC et de Micro-Informatique. En 4 mois environ, vous pourrez dialoguer avec n'importe quel "micro". Vous serez capable d'ècrire seul vos propres programmes en BASIC (jeux, gestion...). Niveau fin de 3°.

MICROPROCESSEURS

- Cours général microprocesseurs/microordinateurs.

Un cours par correspondance pour acquérir toutes les connaissances nécessaires à la compréhension du fonctionnement interne d'un micro-ordinateur et à son utilisation. Vous serez capable de rédiger des programmes en langage machine, de concevoir une structure complète de micro-ordinateur autour d'un microprocesseur (8080-Z80). Un microordinateur MPF 1B est fourni en option avec le cours. Durée moyenne des études : 6 à 8 mois. Niveau conseillé : 1'e ou Bac.

INSTITUT PRIVÉ D'INFORMATIQUE ET DE GESTION 92270 BOIS-COLOMBES (FRANCE) Tel: (1) 242.59.27 Pour la Suisse: 16, avenue Wendt-1203 Geneve

IPIG

A A B

ELECTRONIQUE "84"

- Cours de technicien en Electronique/micro-électronique. Ce nouveau cours par correspondance avec matériel d'expériences vous formera aux dernières techniques de l'électronique et de la micro-électronique. Présenté en deux modules, ce cours qui comprend plus de 100 expériences pratiques, deviendra vite une étude captivante. Il représente un excellent investissement pour votre avenir et vous aurez les meilleures chances pour trouver un emploi dans ce secteur favorisé par le gouvernement. Durée: 10 à 12 mois par module. Niveau fin de 3°.

ı	
;	Envoyez-moi gratuitement et sans engagement votre documentation N° X 3567
	sur: L'INFORMATIQUE 🗆 LA MICRO-INFORMATIQUE 🗆 LES MICROPROCESSEURS 🗆
١	L'ELECTRONIQUE 🗆

Nom	Prénom		
Adresse			
	Ville		
Code postal	Tel		

L'électronique au service de la prospection pétrolière

Le pétrole, c'est une vieille histoire. Dieu dit à Noé : « Fais-toi une arche en bois de gopher ; tu disposeras cette arche en cellules, et tu l'enduiras de poix au-dedans et en dehors » (Genèse VI-14). C'est aussi à travers le bitume, qu'il y a 3 000 ans, les peuples de Mésopotamie connaissaient le pétrole en l'utilisant comme mortier pour la construction des remparts et des palais.

Mais c'est surtout en 1850, à Titusville en Pennsylvanie, que Samuel Kier recueille sur des nappes d'eau un liquide noirâtre qu'il vend aux pharmaciens de New York sous le nom de baume de Kier. Ce succès incite des financiers à chercher du pétrole, ils fondent la Seneca Oil Company et confient à Edwin L. Drake le soin d'effectuer les recherches. Le 27 août 1859, un forage atteignant seulement 23 mètres voit jaillir le pétrole. L'ère de l'or noir commençait (fig. 1).

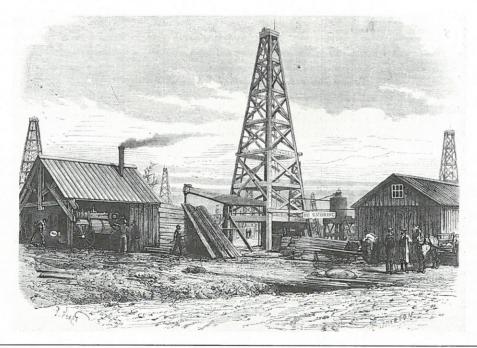


Fig. 1. - Une exploitation au milieu du siècle dernier (doc. « L'Illustration »)

La position du problème

Depuis, la production n'a cessé d'augmenter (3 milliards de tonnes en 1980), mais la consommation également. En outre, les ressources sont mal réparties. Le Japon n'a pratiquement pas de gisement, l'Europe de l'Ouest ne produit que le dixième de ses besoins. En revanche, les pays du Moyen-Orient expédient plus de 90 % de leur production de pétrole.

Parmi les problèmes qui se posent à l'industrie pétrolière, il y a, entre autres, celui du taux de récupération (il est actuellement de 25 %, c'est-àdire qu'on ne produit dans le monde que le quart du pétrole contenu dans la roche réservoir d'un gisement) et celui des nouveaux gisements à découvrir (l'arrêt de la prospection conduirait à l'extinction progressive de la production pétrolière d'ici à 20 ou 30 ans). Des solutions à ces deux problèmes assureraient une augmentation de la production et du volume des ressources globales, permettant de reculer l'échéance de l'épuisement de celles-ci.

Ces solutions font appel à l'électronique dont les grandes applications sont principalement : la détection et la mesure des phénomènes électriques (courants telluriques, déformations du champ électrique) et magnétiques (magnétométrie), la sismique (terrestre et marine), la gravimétrie. Les informations recueillies sont traitées par l'informatique, il existe même des modèles de simulation numérique des gisements.

Où se trouve le pétrole?

Pour connaître les régions où se trouve le pétrole, il faut savoir comment il s'est formé. Sans entrer dans l'étude de la géologie du globe, nous pouvons situer l'origine du pétrole à des centaines de millions d'années. Sa formation serait le résultat d'une lente transformation de minuscules organismes végétaux et animaux déposés au fond des océans, dans les couches sédimentaires. Cette transformation s'est effectuée à l'abri de l'oxygène de l'air, en présence de bactéries et dans des conditions de pression et de température particulières. Que se soit des hydrocarbures liquides (pétrole) ou gazeux (gaz natu-

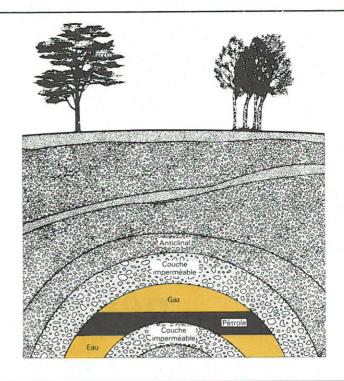


Fig. 2. - Schéma simplifié d'un gisement de pétrole.

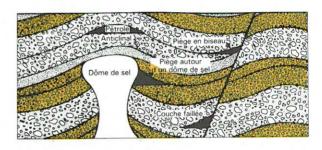


Fig. 3. – Quelques types de pièges à pétrole.

rel), le processus de formation est complexe, long, et ne peut être reproduit en laboratoire, encore moins dans des unités de fabrication. L'« or noir » est donc une ressource énergétique naturelle, épuisable, puisque son renouvellement est pratiquement inexistant.

Le pétrole qui s'est formé dans une roche, que l'on appelle la roche-mère, a subi des contraintes extérieures (notamment de pression). Il s'est donc trouvé expulsé vers des zones où il s'est accumulé entre des couches de terrain perméables ou dans des couches de terrain poreuses (roches-magasins, roches-réservoirs). Ces zones d'accumulation doivent être entourées de terrains imperméables, afin de piéger le pétrole. L'accumulation d'hydrocarbures à l'intérieur des interstices microscopiques de la rochemagasin constitue un gisement dont la surface varie de quelques dizaines à plusieurs centaines de km². Son épaisseur varie de quelques mètres à plusieurs centaines de mètres. La répartition des gisements dans le soussol est très inégale suivant les régions. Cela tient au fait que les régions où toutes les conditions nécessaires à la lente formation du pétrole étaient réunies sont rares.

Dans le cas le plus simple, l'anticlinal (fig. 2), l'architecture d'un gisement comporte des couches imperméables retenant prisonniers des fluides (eau, pétrole, gaz) imbibant des roches poreuses (réservoirs). Pour la clarté du schéma, il faut savoir que l'échelle verticale n'a pas été respectée et que le pétrole se trouve entre 2 000 et 4 000 mètres de profondeur. Le pétrole contenant du gaz dissous occupe les interstices microscopiques entre les cristaux de la roche-magasin. En moyenne, on peut dire qu'un mètre cube de roche imprégnée contient moins de 150 litres de pétrole, et à peine 40 litres arriveront à la tête des puits lors de la mise en exploitation du gisement, soit l'équivalent de 4 % du volume de la rochemagasin.

Tous les gisements ne sont pas d'un accès aussi aisé. Les bouleversements géologiques provoquent des configurations du sol qui facilitent plus ou moins le piègeage du pétrole entre les couches imperméables (fig. 3).

Une première approche

Avant de mettre en œuvre des moyens complexes, importants et onéreux, il est nécessaire d'effectuer une reconnaissance générale de la zone que l'on souhaiterait prospecter. Le choix éventuel implique ensuite une demande de permis de recherche, par conséquent, c'est le début de tout un processus dont le point de départ doit être bien défini.

Depuis longtemps, déclare L.W. Welch, président d'Exxon Production Research, l'exploration géologique s'appuie sur l'étude des affleurements des diverses formations géologiques. Cela permet, dans la mesure où la géologie superficielle peut être extrapolée au sous-sol, de mieux compren-

dre les conditions existant dans les profondeurs où l'on espère découvrir le pétrole et le gaz. Par exemple, les géologues s'intéressent tout particulièrement aux endroits où une voûte de roches imperméables surmonte une roche-réservoir perméable, laquelle se trouve à son tour en communication avec une roche-mère où s'est accumulée autrefois la matière organique. Il peut alors exister un gisement de pétrole et de gaz enfoui dans le sous-sol.

Dans les années 1920, les géologues ont découvert qu'ils pouvaient identifier sans peine beaucoup de caractéristiques structurelles de surface à l'aide de photos aériennes. Les perfectionnements apportés à la méthode leur permirent bientôt de tracer en une seule journée de travail de bureau une carte qui exigeait jusque-là plusieurs mois de relevés sur le terrain.

Les géologues actuels disposent d'instruments bien plus puissants encore : ce sont les satellites spécialisés qui photographient la Terre. Le début des années 70 vit le lancement d'un programme de satellites connu sous le nom de Eros. Chacun de ces satellites circule autour de la Terre sur une

orbite quasi-polaire à une altitude d'environ 900 km. Il porte un analyseur multispectres couvrant la partie du spectre qui va du vert jusqu'au proche infrarouge et les données transmises sont enregistrées en données digitales à bord du satellite sur une bande magnétique à 4 pistes. Son orbite permet au satellite de prendre des images d'une superficie terrestre de 185 km de côté avec un pouvoir séparateur d'environ 80 mètres.

Sur le terrain, le géologue accorde une attention particulière aux indices qui permettent de soupçonner la présence du pétrole et de bitume en profondeur. Ces observations s'accompagnent également d'analyses géochimiques complétées parfois par la réalisation de petits sondages de reconnaissance (« core drills »).

Cette approche préliminaire nécessite ensuite la mise en œuvre d'études géophysiques afin de confirmer les éléments qui jusqu'alors permettaient seulement d'espérer la présence du pétrole.

La prospection géophysique

L'étude du sous-sol, au moyen de techniques dérivées de la physique, a pour but de rechercher les gîtes minéraux et ceci représente l'essentiel de la prospection géophysique. Cette prospection concerne surtout les gîtes contenant des hydrocarbures puisqu'elle en représente environ 98 % en chiffre d'affaires.

La prospection est fondée sur la mesure, sur le sol ou à partir d'un avion, de grandeurs physiques dont les valeurs sont le reflet de la structure du sous-sol et de sa composition géologique. Il existe plusieurs méthodes de mesure et chacune d'entre elles n'est pas toujours suffisante pour affirmer la présence d'un gisement intéressant. Dans la pratique on utilise plusieurs méthodes et c'est par le recoupement des résultats que l'on arrive à cerner des zones où la probabilité de trouver des hydrocarbures est très forte.

Ces méthodes sont utilisées en recherche minière et en recherche pétrolière. Toutefois, les problèmes à résoudre ne sont pas les mêmes devant un filon de pyrite ou un gisement d'hydrocarbures. Les gisements miniers sont près de la surface du sol (exploitation facile), les grandeurs physiques

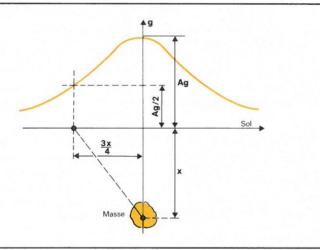


Fig. 4. – Pour une masse située à une profondeur x, l'anomalie grav:métrique $\,$ Ag mesurée à la distance $3\,$ x/4 de la verticale, est réduite de moitié.

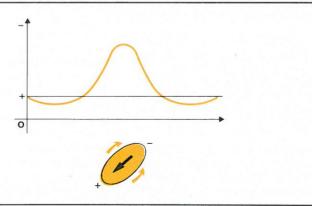


Fig. 5. – La polarisation spontanée

mesurables ne sont pas les mêmes (la pyrite est plus conductrice que des roches encaissantes, d'où l'emploi de méthodes électriques ou électromagnétiques). En revanche, les objectifs du géophysicien pétrolier sont situés plus profondément et celui-ci fait davantage appel à des méthodes qu'il met en œuvre lui-même : comme les séismes artificiels. Cette méthode sismique étudie les échos produits par les couches profondes à partir d'un séisme déclenché à la surface du sol. De cette étude, on déduit la probabilité de trouver des pièges contenant du pétrole et d'en déterminer l'impor-

Les différentes méthodes utilisées sont donc intéressantes à connaître puisqu'elles fournissent directement ou indirectement des informations dont l'exploitation évite de faire des forages aléatoires.

La gravimétrie

Il s'agit de mesurer l'intensité de la pesanteur à la surface du sol (ou de la mer) et d'analyser les anomalies de répartition pour tirer des conclusions sur la géologie du sous-sol. Cette intensité est très faible et varie de quelques dixièmes de milligal à quelques milligals (1 gal vaut 1 cm/s²). En mer, les mesures sont rendues délicates par les mouvements du bateau-laboratoire qui porte le gravimètre.

En outre, la pesanteur est une grandeur aux multiples composantes. C'est la somme de plusieurs termes qui représentent des masses locales, entourées de masses plus profondes. Avec cela, on tient compte d'un environnement représenté par l'aplatissement de la terre, sa rotation, l'influence de la lune et du soleil, l'altitude, etc. En supprimant les composantes liées à l'environnement, il subsiste les masses qui nous intéressent et malgré cela, la présence de plusieurs masses voisines représente une ambiguïté difficile à lever : le pouvoir de résolution d'une telle méthode est très réduit.

En effet, une masse située à une profondeur x, provoque à la surface du sol une anomalie gravimétrique Ag fonction des paramètres précédemment décrits (fig. 4). Si l'on effectue une mesure à la distance 3 x/4 de la verticale, la valeur de cette anomalie est réduite de moitié. On comprend dès lors que deux masses voisines (distantes de x/4 par exemple) soient

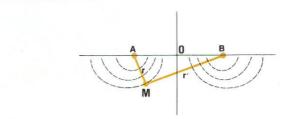


Fig. 6. - La méthode de la carte des potentiels

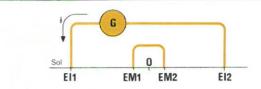


Fig. 7. - La méthode de la résistivité.

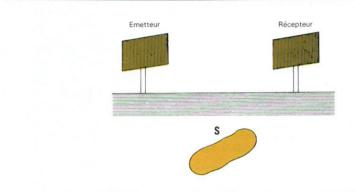


Fig. 8. - La méthode électromagnétique.

difficiles à distinguer séparément, quoique la transformation des cartes d'anomalies au moyen du calcul numérique facilite la tâche.

La gravimétrie n'est pas très spécifique, mais c'est une méthode utilisée au cours des phases préliminaires de la prospection des hydrocarbures. Elle permet de se faire à peu de frais une opinion sur le socle rocheux peu profond, présentant un contraste significatif avec les roches voisines.

Le magnétisme

La méthode magnétique est également utilisée en prospection pétrolière pour les études préliminaires. Elle souffre du même défaut que la méthode gravimétrique: un pouvoir de résolution réduit. Toutefois, elle possède des avantages.

La méthode consiste à mesurer les valeurs du champ magnétique total ou l'une de ses composantes. Le champ et ses composantes s'expriment en gammas (1 gamma vaut 10-5 oersted) et certaines anomalies peuvent

atteindre un millier de gammas. Au cours du temps, la valeur du champ magnétique terrestre peut varier naturellement de quelques centaines de gammas et cette variation vient se superposer au champ magnétique engendré par des masses enterrées localement. Les variations naturelles du champ magnétique couvrent des surfaces assez grandes, il suffit de les mesurer ailleurs que dans les zones de prospection, puis de les soustraire du résultat final.

Cette méthode traite localement les composantes du champ magnétique. Elle est lente, car il est nécessaire de placer l'appareillage en des points précis et on la réserve pour la prospection de petites surfaces. En revanche, si l'on veut englober un champ de recherche beaucoup plus important, la méthode est intéressante car plus rapide. On effectue la mesure du champ total au moyen du magnétomètre à résonance nucléaire. L'appareillage peut être remorqué derrière un navire ou un avion, car la mesure est insensible à l'orientation et aux mouvements de l'engin porteur du magnétomètre.

L'électricité

Les mesures effectuées au moyen de méthodes électriques peuvent se ranger en deux grandes rubriques : les méthodes passives et les méthodes actives.

- Les *méthodes passives* étudient les champs électriques naturels. Ce sont essentiellement : la méthode tellurique et la méthode de polarisation spontanée.
- La méthode tellurique utilise les champs naturels engendrés par les courants qui parcourent le sous-sol et qui sont dus presque exclusivement à la rotation de la terre et à l'activité solaire. Ces courants ont la particularité de circuler en nappes très étalées couvrant de vastes territoires. Ce sont des courants induits dans le sol par des fluctuations de l'ionosphère et leur fréquence varie de 100 à 1/100e de hertz. La méthode tellurique utilise l'enregistrement simultané des différences de potentiel aux extrémités de deux lignes perpendiculaires et des composantes magnétiques associées. Cette méthode apparaît comme intermédiaire entre la gravimétrie et la sismique-réflexion, que nous verrons plus loin. Elle a pour avantage sur les autres méthodes que le champ tellurique dépend seulement de la structure des terrains sédimentaires, car eux seuls sont conducteurs et la structure du substratum cristallin est sans répercussion sur le champ tellurique.
- La méthode de polarisation spontanée exploite la polarisation qui prend naissance au voisinage d'un amas présentant une conductibilité métallique (fig. 5). Dans un milieu hétérogène, cet amas s'oxyde et forme un générateur de courant électrique dont les effets se manifestent à la surface du sol par des différences de potentiel mesurables au moyen d'électrodes impolarisables implantées dans le sol. Avec une électrode fixe, on mesure les différences de potentiel par rapport à ce point fixe. Il faut, bien entendu, que l'amas minéralisé baigne dans un électrolyte hétérogène le long de la verticale et que le sommet de cet amas dépasse le niveau hydrostatique. Le courant qui s'établit circule de bas en haut, la partie supérieure représente un centre négatif.
- Les méthodes actives sont les méthodes pour lesquelles on impose au sous-sol un champ électrique dont on mesure les effets. Ce sont : la méthode de la carte des potentiels, la

méthode de la résistivité, les méthodes électromagnétiques, la méthode de la polarisation provoquée.

– La méthode de la carte des potentiels consiste à appliquer entre deux points quelconques du sol une différence de potentiel, puis à mesurer les variations de potentiel existant entre ces deux points. Selon la résistance ohmique du sous-sol, les variations de potentiel mesurées permettent de tracer des équipotentielles et de dresser des cartes de potentiels d'une région donnée.

Avec un sol homogène et plan, les variations de potentiel entre deux points A et B (fig. 6) peuvent être calculées par l'application de la loi d'Ohm à un conducteur indéfini. Pour un point M, nous aurons :

$$V = \frac{Qi}{2\pi} (1/r - 1/r') + constante$$

où Q est la résistivité du sol, i l'intensité du courant, r et r' les distances de M aux points A et B. Les surfaces équipotentielles sont définies par l'équation 1/r - 1/r' = constante.

- La méthode de la résistivité est une variante de la méthode précédente. En effet, au lieu de mesurer le potentiel lui-même, on considère ses écarts (terrain hétérogène) par rapport à ce qu'il aurait été dans un terrain homogène. On peut dire que c'est le rapport entre la valeur mesurée et la valeur théorique pour un point donné : c'est-à-dire le rapport entre le champ réel et le champ théorique. Ce rapport, appelé résistivité apparente, est

d'un emploi commode puisque, en supposant égale à un la résistivité du milieu de référence, cette résistivité apparente devient un paramètre fondamental.

Dans la pratique, au lieu d'exécuter des mesures tout autour des points d'injection du courant, on se contente de faire les mesures selon une ligne droite de direction choisie. D'après la figure 7, on utilise un quadripôle comprenant deux électrodes d'injection El₁ et El₂ et deux électrodes de mesure EM₁ et EM₂. En groupant les électrodes de deux façons différentes, on réalise deux modalités particulières de cette méthode :

- a) Avec une distance constante entre les électrodes (d'injection et de mesure), on réalise un quadripôle qui se déplace le long d'un profil, permettant ainsi de tracer des cartes de résistivités apparentes. La résistivité apparente est donnée par la formule Qa = kAv/i, où Av est la différence de potentiel mesurée entre les électrodes de mesure EM_1 et EM_2 .
- b) Avec une distance entre les électrodes qui augmente, la profondeur atteinte est plus grande mais le volume des terrains pris en compte est plus important d'où une information plus générale.

De ces modalités, il faut choisir celle particulièrement adaptée à l'étude des modifications des couches horizontales de terrains. Ce sont des méthodes utilisées en recherche géologique et minière.

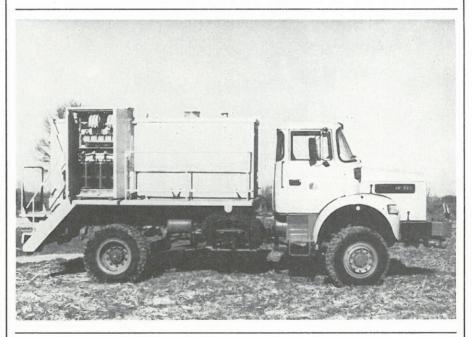


Fig. 9. - Méthode électromagnétique : camion émetteur.

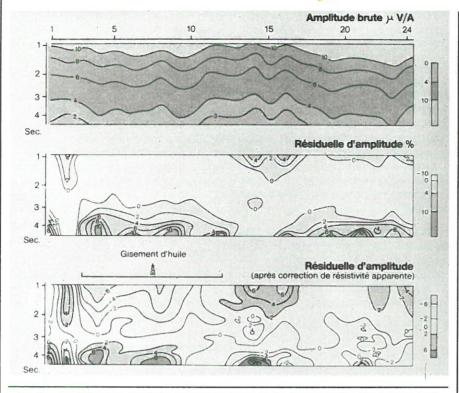


Fig. 10. – Profil électrique transitoire à travers un champ d'huile. Sous la section en amplitude brute, deux anomalies résiduelles. Celle de gauche correspond au gisement. Celle de droite disparaît après correction de résistivité apparente.

Fig. 12. - Essais sismiques sur le Grand Lac Salé dans l'Utah (USA).

- La méthode électromagnétique met en œuvre un émetteur qui injecte dans les terrains un courant (5 000 Hz), recueilli par un récepteur relié à un appareil de mesure. La méthode est fondée sur le fait que les corps enfouis dans le sous-sol sont le siège de courants induits plus importants que ceux qui circulent dans les alentours de la zone de mesure (fig. 8 et 9).

Les données recueillies à la réception sont captées par un camion-récepteur qui enregistre numériquement des transitoires électromagnétiques. Ce type de véhicule (comme, par exemple, celui de la Compagnie Générale de Géophysique) est organisé autour d'un ordinateur qui traite les données acquises, en temps réel ou différé, grâce à un logiciel embarqué en vue de traiter l'information sur place (fig. 10).

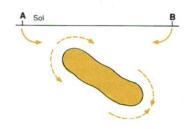


Fig. 11. - La polarisation provoquée.

 La méthode de la polarisation provoquée. Lorsque l'on injecte un courant dans le sol, on observe, à la coupure du courant d'excitation, un courant de décharge (fig. 11). En effet, un ensemble de masses métalliques environnées d'électrolytes est le siège de phénomènes électrochimiques. Les charges positives et négatives accumulées à l'interface s'orientent sous l'effet du courant : à la coupure, il v a réorientation et naissance d'un courant de même sens que le courant d'injection. Ce potentiel de polarisation provoquée semble proportionnel à l'intensité du courant d'injection. Cette méthode a donné naissance à deux procédés d'investistigation : la mesure de la décroissance des potentiels après un envoi de courant continu d'une durée indéterminée et la mesure de la variation de résistivité apparente lorsque l'on utilise des courants d'injection pulsés et que l'on fait varier la fréquence entre 0,5 et 10 Hz: c'est la méthode dite de l'« effet de fréquence. ». La méthode de la polarisation provoquée est utilisée surtout en recherche minière et nous n'en dirons pas plus.

Fig. 13. – Equipe Vibroseis de la Compagnie générale de Géophysique dans la forêt de Fontainebleau.

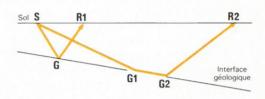


Fig. 14. – Ondes sismiques-réflexion : SGR₁. Ondes sismiques-réfraction : SG₁G₂R₂.

La sismique

Les méthodes sismiques reposent sur le principe d'une étude de la propagation, dans le sous-sol, d'ondes mécaniques engendrées en surface au moyen d'explosions ou de vibrations (fig.12, 13). Ces méthodes se sont considérablement développées au cours des dernières années. Il faut dire que la découverte de nouveaux gisements d'hydrocarbures dans les pays où les bassins sédimentaires ont été largement explorés est de plus en plus dépendante de l'amélioration des techniques de prospection géophysique. En France, par exemple, les progrès réalisés par les méthodes sismiques permettent la mise en évidence de pièges stratigraphiques de taille limitée et de faible relief, susceptibles de contenir des poches de pétrole, mais néanmoins de taille suffisante pour être exploitables.

En traversant les différentes couches de roches rencontrées, les ondes sismiques subissent des réflexions ou des réfractions (fig. 14). Comme en optique, lorsque les ondes atteignent une surface de discontinuité (interface géologique) séparant deux milieux aux propriétés élastiques différentes, il y a réflexion ou réfraction.

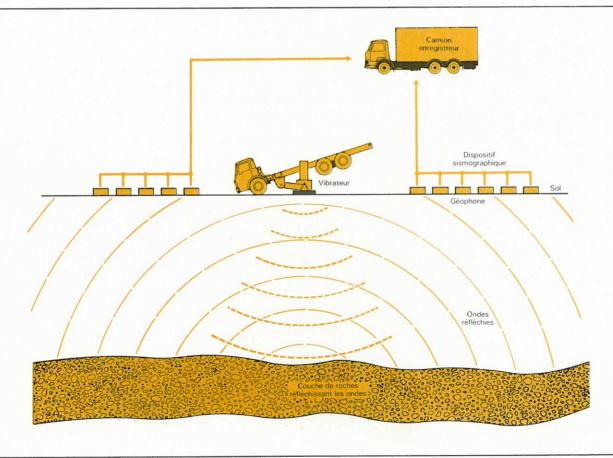


Fig. 15. - Principe de la vibrosismique.

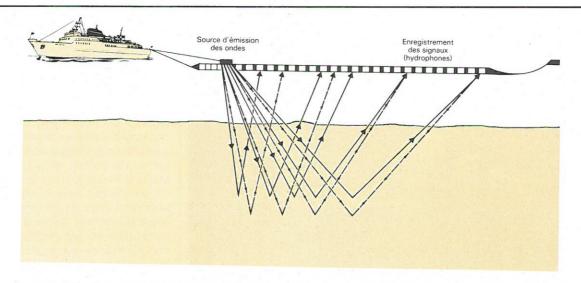


Fig. 16. - Principe de la sismique marine.

Ces deux méthodes ont chacune leur champ d'application. La sismique-réflexion permet l'étude de l'épaisseur des sables et des graviers en mer, la recherche pétrolière (terre et mer) et l'océanographie géophysique. La sismique-réfraction est plutôt réservée pour la recherche de la base des alluvions dans une vallée, la reconnaissance par points d'un socle cristallin, l'étude de l'épaisseur de la croûte terrestre (à terre et dans les profondeurs marines) et pour la prospection pétrolière.

Dans la pratique, il y a deux cas de figure : à la surface du sol et en mer.

- A la surface du sol (fig. 15) se trouve un dispositif sismographique composé de groupes de géophones reliés à des amplificateurs, puis à un camion enregistreur. Par ailleurs, un vibrateur mécanique (qui remplace de plus en plus la technique des charges d'explosifs placées au fond de petits puits) provoque les secousses sismiques dont la mise en route est soigneusement enregistrée.
- En mer, le principe est similaire (fig. 16), on fait exploser des charges dans l'eau et les ondes réfléchies sont recueillies par des groupes d'hydrophones. L'ensemble est remorqué par un navire.

De grands progrès ont été réalisés dans la qualité des enregistrements, les géophones (ou les hydrophones) sont beaucoup plus sensibles et par ailleurs les appareils ont acquis une robustesse qui limite les risques de détérioration au moment de leur emploi. Quant au traitement des données sismiques, il a bénéficié du développement constant des programmes infor-

matiques, de l'augmentation de la puissance et de la vitesse de calcul des ordinateurs. Ainsi est-on en mesure d'obtenir une interprétation plus proche de la réalité en effectuant de nombreuses corrections des temps enregistrés, pour tenir compte par exemple des irrégularités topographiques de surface. Le résultat se présente sous la forme d'une coupe sismique sur laquelle apparaissent les inflexions du sous-sol qu'il appartient ensuite aux géologues de traduire en termes de profondeur, de nature de roches et de forme structurale.

Parmi les outils nouveaux, citons chez Elf Aquitaine, la « diagraphie sismique EVA ». Cet outil permet d'enregistrer le signal acoustique complet et non plus la première arrivée. L'outil

est multi-émetteur et multi-récepteur, l'espacement émetteur-récepteur étant très grand. Dans ces conditions, on peut distinguer clairement les différents types d'ondes qui sont enregistrés après propagation dans les formations. Les résultats permettent d'avoir accès aux propriétés physiques des formations, ainsi qu'à la détection de fractures et de présence de fluides dans ces formations.

Conclusion

Dans ce rapide tour d'horizon nous pouvons, en guise de conclusion, évoquer les propos de *B. Delapalme*, directeur Recherche-Développement-Innovation d'*Elf Aquitaine*, lors de son

Fig. 17. – La salle d'ordinateurs pour le traitement des informations géophysiques.

Fig. 18. – Le système Pericolor : un traitement et une visualisation des données sismiques en trois dimensions.

exposé sur les applications de la micro-électronique à l'industrie pétrolière: « Un laboratoire sismique moderne comporte en effet un grand nombre de capteurs (plusieurs centaines) équipés au moins de convertisseurs analogique/numérique et qui transmettent dans de bonnes conditions (grâce au mode numérique) à un laboratoire central les informations qu'ils recueillent. Cette transmission peut se faire, soit par câble, soit même par émission hertzienne avec éventuellement une opération de multiplexage permettant l'occupation d'un seul canal UHF malgré le grand nombre de capteurs. Un exemple d'un tel dispositif peut être trouvé dans le dispositif Myriaseis en cours d'essai. »

« Par ailleurs, le traitement en un temps de plus en plus court d'un nombre de données de plus en plus grand est rendu possible par la puissance des ordinateurs accessibles actuellement » (fig. 17).

« En fait, à la double dimension « spatial + temporel » utilisée jusqu'à présent, on cherche de plus en plus à adjoindre une nouvelle dimension spatiale (« sismique 3D »), qui permet d'avoir une image du sous-sol ellemême à trois dimensions (fig. 18). Un peu, mutatis mutandis, comme un radar doté d'une antenne de grande surface permet d'obtenir une image point par point des obstacles qu'il rencontre. »

« Un autre domaine de l'exploration

est en train de réaliser de grands progrès, grâce surtout à l'évolution des capteurs. Il s'agit des mesures en cours de forage (« Measurement While Drilling », « MWD »). Si les capteurs jouent un rôle important en la matière, c'est que, comme nous l'avons signalé, on peut maintenant les intégrer avec la micro-électronique qui réalise la transformation analogique/numérique, et même opère les premiers traitements. La transmission complexe du fond de puits à la surface est ainsi grandement facilitée, d'autant que l'intégration des capteurs et de l'électronique procure une bien meilleure fiabilité vis-à-vis, par exemple, des parasites électriques ou mécaniques. Il faut d'ailleurs souligner que ces progrès sont actuellement rendus possibles par des améliorations constantes de la tenue en température des circuits intégrés : une tenue satisfaisante à 200° pendant quelques heures paraît maintenant accessible. »

« Il faut enfin noter que, à l'extrémité de la chaîne électronique, le progrès de la présentation des résultats (en couleur, avec changement de la perspective, etc.) facilite ce dialogue homme-machine et que l'avènement du micro-ordinateur personnel est succeptible d'amener encore de grands progrès dans la rapidité et l'efficacité des mesures faites sur champ. »

J. Trémolières

Bibliographie

[1] Boy de La Tour X., Le Leuch H., Valais M. Le pétrole, brochure *Hachette/Centre Français d'Informations Pétrolières*, 1981.

[2] Welch L.W. Progrès dans les techniques d'exploration et de production. *Pétrole Progrès*, n° 130, revue *Esso*, 1981.

[3] Delapalme B. Applications de la micro-électronique à l'industrie pétro-lière. *Bulletin mensuel d'information ELF Aquitaine* n° 11, novembre 1983.

[4] Allegre Cl. L'ordinateur en géologie. Pour la science n° 76, février 1984.

Les photographies illustrant cet article sont des documents en provenance de la société Elf-Aquitaine.

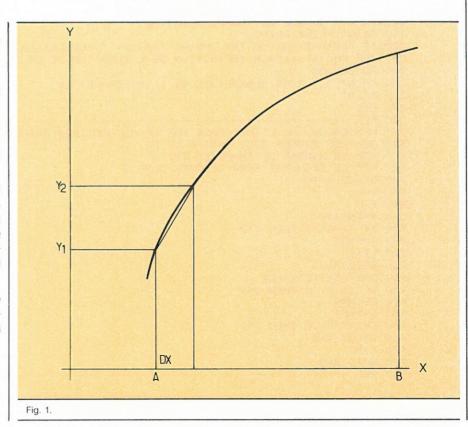
Programme de calcul d'une aire algébrique

La détermination de la valeur d'une aire algébrique est une application bien connue du calcul intégral, qui éveille certainement beaucoup de réminiscences « scolaires » parmi nos lecteurs!

La micro-électronique ayant depuis lors apporté le concours que l'on sait aux opérations mathématiques, il est tout à fait possible de concevoir un programme simple de calcul d'une aire selon la méthode des trapèzes.

Tel est l'objet de cette courte étude.

Principe

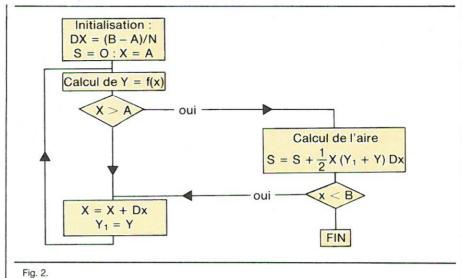

Une intégrale d'expression $\int_a^b f(x) \cdot dx \text{ est l'aire algébrique de la surface délimitée par la courbe } Y = f(x) \text{ et les droites } x = A, x = B \text{ ; si on divise l'intervalle } (A, B) \text{ en n parties, elle est encore égale à la somme des aires partielles ainsi obtenues.}$

Si les intervalles élémentaires sont suffisamment petits, on peut approximer dans chaque intervalle le tronçon de courbe f(x) par un segment de droite et, ainsi, chaque surface partielle peut-être assimilée à l'aire d'un trapèze (fig. 1).

L'aire d'un trapèze étant d'autre part donnée par le produit de la demisomme des bases par la hauteur, on a la formule suivante :

$$\frac{Y_1 + Y_2}{2} Dx + ... + \frac{Y_{n+1} + Y_n}{2} Dx$$

avec Dx =
$$\frac{B-A}{p}$$


La marche à suivre est la suivante :

- on désigne par S la valeur de l'intégrale;
- on fait X = A et on calcule f (x);
- on incrémente X et on stocke la valeur précédente de f(x) en mémoire Y₁;
- on recalcule Y = f(x) pour le nouvel X;
- puis on fait le calcul de l'aire du trapèze et l'on ajoute à la valeur de la somme précédente :

 $S = S + 0.5 (Y_1 + Y) DX.$

On élabore ainsi l'organigramme de la figure 2 ci-contre.

P. Pichon

FILE: INTEG BAS PAGE 001 20 REM * CALCUL D'INTEGRALES PAR LA METHODE DES TRAPEZES OU DE GAUSS 30 REM * 40 REM * AUTEUR : PATRICK PICHON 50 REM * * 60 REM * MARS 1984 70 REM * 90 DEFDBL A-Z: 'toutes les variables de A à Z sont definies en double precision 100 PRINT CHR\$(26):PRINT:PRINT 110 PRINT TAB(20) "CALCUL DE L'AIRE D'UNE INTEGRALE" 120 PRINT TAB(22) "PAR LA METHODE DES TRAPESES" 130 PRINT: PRINT 140 PRINT "L'EQUATION DE LA COURBE DOIT ETRE DEFINIE A LA LIGNE 250" 150 PRINT "DE LA MANIERE SUIVANTE:" 160 PRINT " 230 DEF FNA(X)=Y(X)" 170 PRINT: PRINT 180 INPUT "VALEUR DE LA BORNE INFERIEURE "; A 190 INPUT "VALEUR DE LA BORNE SUPERIEURE "; B 200 INPUT "NOMBRE DE TRAPEZES DESIRE " ; N 210 PRINT:PRINT:PRINT 220 IF ABS(A-B)/N <50 THEN PRINT TAB(25) "VEUILLEZ PATIENTER":PRINT:PRINT 230 DEF FNA(X)=X:'REM DEFINITION DE L'EQUATION DE LA COURBE 240 GOSUB 290 250 PRINT " AIRE ALGEBRIQUE DE L'INTEGRALE: ";S 260 PRINT 270 END 280 REM 290 REM CALCUL DE L'INTEGRALE PAR LA METHODE DES TRAPEZES 300 REMILES BORNES SONT DANS A ET B 310 REM LE NOMBRE DE TRAPEZES EST N 320 REM LE RESULTAT SERA DEPOSER DANS S 330 DX=(B-A)/N 340 S=0 350 X=0 360 Y=FNA(X) 370 IF (X-A)>0 THEN 410 380 X=X+DX 390 Y1=Y 400 GOTO 360 410 S=S+.5*(Y1+Y)*DX 420 IF (X-B)<0 THEN 440 430 RETURN 440 X=X+DX 450 IF (X-B)<0 THEN 390 460 DX=DX-X+B 470 X=B 480 GOTO 390 490 REM

Le listing mis au point par l'auteur.

AB ELECTRONICS PRODUCTS GROUP

(G.-B.)

Capteurs inductifs (déplacement, rotation, tachymétrie)

Importateur:

A.B. ELECTRONIQUE FRANCE

17, rue des Quinze-Arpents, Orly Sénia 418 94567 Rungis Cedex

Tél. : (1) 687.32.80 Tx : 200 825

ACCEL

(F)

Capteurs inductifs de déplacement

Fabricant:

ACCEL

35-37, rue de la Mare

75020 Paris

Tél.: (1) 366.47.26 Tx: 220 221

ACIR

(F)

Détecteurs de proximité inductifs; émetteurs d'impulsions (mesure de vitesse ou comptage)

Fabricant:

ACIR

29-31, rue de Naples

75008 Paris

Tél.: (1) 522.92.46

Tx: 650 467

AFCO

(F)

Capteurs de pression relative (pont de jauges à S.C.) Distributeur :

EUROPAVIA

6-8, rue Ambroise-Croizat, Z.I. des Glaises

91120 Palaiseau Tél. : (6) 930.50.50

Tx: 692 113

AIR PRECISION

(F)

Codeurs angulaires

Fabricant:

AIR PRECISION

5, avenue Denis-Papin 92350 Le Plessis-Robinson

Tél.: (1) 630.21.24 Tx: 270 517

A.J.T.

(G.B.)

Capteurs de température (thermocouples et sondes platine)

Importateur:

SEINA S.A.

40, rue de Meudon 92100 Boulogne Tél. : (1) 621.19.20 Tx : 203 598

ALLO ALBERT LOB

(RFA)

Capteurs de pression pneumatiques et piézorésistifs Importateur :

SINTCO

15, rue des Sorins 92000 Nanterre Tél. : (1) 778.15.80 Tx : 620 864

ALUCI

(F)

Capteurs de déplacement inductifs; détection de passage piézo et opto; détection d'opacité opto; capteurs de température (thermocouples et S.C.). Fabricant:

ALUCI

103, avenue de la Grande-Charmille 91700 Sainte-Geneviève-des-Bois

Tél.: (6) 015.09.19 Tx: 600 326

A.M.G

(F)

Cellules photo électriques; capteurs à fibres optiques; sondes de température.

Fabricant:

A.M.G.

5, cours Edouard-Vaillant 33300 Bordeaux Tél.: (56) 39.63.25

A.M.R.

(RFA)

Capteurs de température (thermocouples, sondes platine)

Importateur:

FRANCAISE D'INSTRUMENTATION

19, rue Fernand-Pelloutier 94500 Champigny-sur-Marne Tél.: (1) 706.30.77

Tx: 210 023

ANALOG DEVICES

(USA)

Capteurs à semi-conducteurs Importateur :

ANALOG DEVICES S.A.

12, rue le Corbusier, bâtiment léna, Silic 204 94518 Rungis Cedex

Tél. : (1) 687.34.11 Tx : 200 156

A.O.I.P.

(F)

Capteurs de pression à jauge ; sondes de température ; sondes pyrométriques I.R.

Fabricant:

A.O.I.P.

8-14, rue Charles-Fourier, BP 301

75624 Paris Cedex 13 Tél. : (1) 588.83.00

Tx: 204 771

ARELEC

(F)

Composants magnétiques pour capteurs

ARELEC S.A.

avenue Beau Soleil, BP 139, Idron

64320 Bizanos Tél.: (59) 02.82.54 Tx: 570 975

ASEA

(Suède)

Capteurs de température et de vibrations à fibres optiques : capteurs de traction, pression et pesage électromagnétiques ; capteurs de déplacement et de mesure de vitesse optiques.

Importateur:

ASEA

rue du 8-Mai-1945 95340 Persan Tél.: (3) 470.92.00 Tx: 698 827

ASSISTANCE INDUSTRIELLE **DAUPHINOISE**

(F)

Capteurs à fibres optiques ; capteurs acoustiques.

Fabricant:

ASSISTANCE INDUSTRIELLE DAUPHINOISE

chemin du Vieux-Chêne, ZIRST 38240 Meylan

Tél.: (76) 90.27.27 Tx: 320 245

ATEX

(F)

Capteurs de flexion et de cisaillement à jauges

Fabricant: **ATEX**

BP 326

07003 Privas Cedex Tél.: (75) 64.00.44 Tx: 345 603

AUTOMATIC SYSTEM LABORATORIES

Capteurs de déplacement capacitifs Importateur:

SEDEME

11. rue Simonet 75013 Paris Tél.: (1) 580.72.00

Tx: 200 676

AUXITROL

Capteurs de température (thermostats, thermocouples, sondes résistives)

Fabricant:

AUXITROL

1, rue d'Anjou, BP 241 92603 Asnières Tél.: (1) 790.62.81 Tx: 620 359

BALLUFF ELECTRONIQUE

(F)

Capteurs de déplacement et de présence inductifs et opto-électroniques

Fabricant:

BALLUFF ELECTRONIQUE

3. avenue Charles-de-Gaulle 94470 Boissy-Saint-Léger Tél.: (1) 569.23.32

Tx: 250 902

BALOGH

Détecteurs de proximité inductifs

Fabricant:

BALOGH

9, rue Richepanse 75008 Paris

Tél.: (1) 260.36.70 Tx: 670 988

BARKSDALE

(USA)

Capteurs de pression à jauges de contrainte ; pressostats : capteurs de température.

Importateur:

AURIEMA FRANCE

Z.A. des Marais, 1, avenue de la Marne, BP 131 94122 Fontenay-sous-Bois Cedex

Tél.: (1) 876.11.03 Tx: 680 124

BAUER INSTRUMENTS DE MESURE

(Suisse)

Capteurs de position angulaire à condensateur différentiel

Importateur:

BAUER INSTRUMENTS DE MESURE FRANCE

5, rue Pasteur, BP 15 91301 Massy Tél.: (6) 920.89.49 Tx: 600 239

BAUMER ELECTRIC

(Suisse)

Capteurs de proximité inductifs, capacitifs et photoélectriques.

Importateur:

ELESTA ELECTRONIQUE

1. avenue Herbillon 94160 Saint-Mandé Tél.: (1) 374.42.82 Tx: 240 044

B.E.L.

(USA)

Capteurs de couple en rotation Importateur:

ERICHSEN

68, rue de Paris 93804 Epinay-sur-Seine Cedex

Tél.: (1) 823.07.70 Tx: 612 973

BELL & HOWELL

(USA)

Capteurs de pression et de vibration ; densimètres. Importateur :

BELL & HOWELL S.A.

112, rue des Solets, Silic 138 94523 Rungis Cedex

Tél. : (1) 687.26.38 Tx : 204 368

BEN INDUSTRIES

(F)

Capteurs de débits électromagnétiques et à ultrasons; transducteurs à ultra-sons pour mesure de niveaux et de distances.

Fabricant:

BEN INDUSTRIES

5, boulevard du Moulin-Guieu 13013 Marseille

Tél. : (91) 66.68.42 Tx : 401 269

BERI

(F)

Capteurs-transmetteurs de pression inductifs

Fabricant:

BERI

12, rue Ambroise-Croizat 94800 Villejuif

Tél. : (1) 726.35.16 Tx : 201 235

BERNSTEIN

(RFA)

Détecteurs de proximité et de niveau (capacitifs et inductifs)

Importateur:

AFIMES

30, place de la Loire, Silic 177 94563 Rungis Cedex

Tél. : (1) 686.77.74 Tx : 203 366

BOURDON

(F)

Capteurs-transmetteurs de pression; sondes thermométriques platine.

Fabricant:

BOURDON

29, rue du Progrès 93100 Montreuil Tél. : (1) 859.16.90

Tx: 210 769

BOURNS

(USA)

Capteurs de pression et de déplacement (piézorésistifs et potentiométriques)

Importateur:

OHMIC S.A.

21-23, rue des Ardennes

75019 Paris Tél.: (1) 203.96.33

Tx: 230 008 PAGE 104 – ELECTRONIQUE APPLICATIONS N° 36

BRUEL ET KJAER

(Danemark)

Capteurs de chocs, vibrations et accélérations piézoélectriques; microphones de mesure à condensateur; hydrophones.

Importateur:

BRUEL ET KJAER FRANCE

38, rue Champoreux 91540 Mennecy Tél.: (6) 457,20,10

Tx: 600 573

CALLISTO

(F)

Capteurs de pression inductifs

Fabricant:

CALLISTO

18 ter, rue des Osiers 78310 Coignières Tél. : (3) 051.61.06 Tx : 698 581

C.C.C.

(USA)

Synchros Importateur:

TECHMATION

20, quai de la Marne

75019 Paris

Tél.: (1) 200.11.05 Tx: 211 541

C.D.A.

(F)

Sondes de température résistives (mesures)

Fabricant:

C.D.A.

52, rue Leibnitz 75018 Paris

Tél.: (1) 627.52.50 Tx: 280 589

CHAUVIN-ARNOUX

(F)

Capteurs de température (thermocouples et sondes platine); capteurs inductifs de proximité et anémométriques; capteurs pyrométriques optiques.

Fabricant:

CHAUVIN-ARNOUX

190, rue Championnet 75018 Paris

Tél. : (1) 252.82.55

Tx: 280 589

C.I.C.

(USA)

Capteurs de pression à capsules manométriques Importateur :

MESUREUR

72-76, rue du Château-des-Rentiers

75013 Paris

Tél.: (1) 583.66.41

Tx: 200 661

CLAUD GORDON

(USA)

Thermocouples; fils et prises pour thermocouples.

MAIR

9 bis, avenue De-Lattre-de-Tassigny

92100 Boulogne Tél.: (1) 604.81.11 Tx: 360 650

CODECHAMP

(F)

Codeurs angulaires optiques

Fabricant:

CODECHAMP S.A.

Champagnat

23190 Bellegarde-en-Marche

Tél.: (55) 67.63.00 Tx: 590 841

COLLINS

(USA)

Capteurs de déplacements linéaires inductifs Importateur :

BELL & HOWELL

112, rue des Solets, Silic 138 94523 Rungis Cedex

Tél. : (1) 687.26.38 Tx : 204 368

COLUMBIA

(USA)

Capteurs de vibration et de pression piézo-électriques ; accéléromètres asservis ; inclinomètres asservis.

Importateur:

MECAPTELEC

BP 21

40160 Parentis-en-Born Tél.: (58) 78.43.72

Tx: 540 560

COLVERN

(G.-B.)

Capteurs de position résistifs

Importateur:

WELWYN ELECTRONIQUE

17, rue de Sapaille 37100 Tours

Tél.: (47) 51.76.22 Tx: 751 427

COMETA

(F)

Capteurs de détection photoélectriques Fabricant :

COMETA S.A.

chemin du Vieux-Chêne, BP 81

38243 Meylan Cedex Tél. : (76) 90.06.07 Tx : 980 749

COMPTOIR LYON-ALEMAND-LOUYOT

(F)

Capteurs thermométriques (thermocouples et sondes platine)

Fabricant:

C.L.A.L.

13, rue de Montmorency 75139 Paris Cedex 03 Tél. : (1) 277.11.11

Tx: 220 514

CONTROLE BAILEY

(F)

Capteurs de pression

Fabricant:

CONTROLE BAILEY

5, avenue Newton 92142 Clamart Cedex Tél.: (1) 630.22.46 Tx: 260 092

CORECI

(F)

Capteurs de tempérture (thermocouples, sondes platine); capteurs d'humidité relative (capacitifs).

Fabricant:

2-4, rue Jean-Desparmet, BP 82 37

69355 Lyon Cedex 08 Tél. : (1) 874.59.06 Tx. : 300 314

COUDOINT

(F)

Capteurs potentiométriques ; codeurs angulaires. Fabricant :

COUDOINT S.A.

73, rue Marcelin-Berthelot 92700 Colombes Tél.: (1) 242.99.72

Tx: 698 577

CROUZET

(F)

Capteurs pneumatiques Fabricant:

CROUZET

25, rue Jules-Védrines 26027 Valence Cedex Tél.: (75) 42.91.44

Tx: 345 802

DACO

(G.-B.)

Codeur angulaire optique miniature Importateur :

LE GROUPE SCIENTIFIQUE

114, avenue du Président-Wilson 93212 La Plaine-Saint-Denis Cedex

Tél.: (1) 243.22.44 Tx: 611 976

DANFOSS

(Danemark)

Thermostats: pressostats: capteurs-transmetteurs de pression, de température, de débit (à ultrasons), de niveau (à ultrasons) et de taux d'oxygène dilué. Importateur:

DANFOSS FRANCE Département Industrie

Z.A. de Trappes-Elancourt, 7, av. Vladimir-Komarov 78193 Trappes

Tél.: (3) 062.41.34 Tx: 697 809

DATAMETRICS

(USA)

Capteurs de pression capacitifs Importateur:

SCHAEFER TECHNIQUES

6. rue de Versailles 91620 Nozav Tél.: (6) 901.49.73

Tx: 692 266

DATA TECHNOLOGY

(USA)

Codeurs incrémentaux

Importateur:

SOCITEC

Z.I. du Prunay, 37-41, rue Benoît-Frachon

78500 Sartrouville Tél.: (3) 914.00.18 Tx: 696 591

DEBRO

(RFA)

Capteurs-transmetteurs de pression inductifs Importateur:

BERI

12, rue Ambroise-Croizat

94800 Villejuif Tél.: (1) 726.35.16 Tx: 201 235

D.E.C.

Détecteurs de débit, niveau, pression, vide (électromagnétiques).

Fabricant:

D.E.C.

18, avenue du Président-Kennedy 93110 Rosny-sous-Bois Tél.: (1) 528.25.73

Tx:

DELTA CONTROLS

(G.-B.)

Pressostats et thermostats

Importateur:

SINTCO

15. rue des Sorins 92000 Nanterre Tél.: (1) 778.15.80 Tx: 620 864

DEUTSCH

(F)

Détecteurs de proximité inductifs

Fabricant:

COMPAGNIE DEUTSCH

10, rue Lionel-Terray 92502 Rueil-Malmaison Tél.: (1) 708.92.82

Tx: 260 787

DIAMOND H

(G.-B.)

Thermostats pour électroménager Importateur:

JPC

Route de Chalifert, BP 14, Coupvray 77450 Esbly

Tél.: (6) 004.35.19 Tx: 692 724

DISC INSTRUMENTS

(G.-B.)

Codeurs optiques Importateur:

AIR PRECISION

5, avenue Denis-Papin 92350 Le Plessis-Robinson

Tél.: (1) 630.21.24 Tx: 270 517

DYNAMIC RESEARCH

(USA)

Codeurs angulaires optiques (incrémentaux)

Importateur:

EQUIPEMENTS SCIENTIFIQUES

54, rue du 19-Janvier 92380 Garches Tél.: (1) 741.90.90 Tx: 204 004

DYTRAN

(USA)

Capteurs piézo-électriques de vibration, de pression et de force (cellules de charge)

Importateur:

MECAPTELEC

BP 21

40160 Paretis-en-Born Tél.: (58) 78.43.72

Tx: 540 560

E.A.M.

Capteurs capacitifs et inductifs pour mesures dimensionnelles

Fabricant:

E.A.M.

Z.A.C. des Godets

6, rue des Petits-Ruisseaux 91370 Verrières-le-Buisson

Tél.: (6) 011.44.33

Tx: 600 245

EIRELEC

(Irlande)

Capteurs de température (thermocouples, sondes platine)

Importateur:

FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

ELCONTROL

(Italie)

Cellules photoélectriques

Importateur:

AUTOMATION CONTROL FRANCE

31, rue de la Grande-Denise 93000 Bobigny Tél. : (1) 849.35.23

Tx: 211 086

ELECTRICFIL INDUSTRIE

(F)

Capteurs de vitesse électromagnétiques; capteurs de température (applications automobile).

Fabricant:

ELECTRICFIL INDUSTRIE

Beynost

01700 Méribel Tél. : (7) 855.35.90

Tx: 340 821

ELECTRO CORPORATION

(USA)

Capteurs magnétiques; relais de proximité; capteurs à courants de Foucault.

Importateur:

EQUIPEMENTS SCIENTIFIQUES

54, rue du 19-janvier 92380 Garches Tél. : (1) 741.90.90

Tx: 204 004

ELECTROMATIC

(Danemark)

Capteurs inductifs, capacitifs et optiques (niveau, pression, température, vent, barrières).

Importateur:

ELECTROMATIC SARL

BP 704, Garonor, Bâtment 19/C 93613 Aulnay-sous-Bois

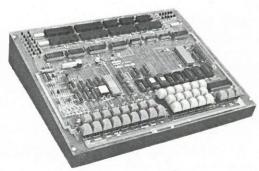
Tél.: (1) 867.87.06 Tx: 220 972

ELTEC

(USA)

Capteurs pyroélectriques

Importateur:


ISC France

28, rue de la Procession 92150 Suresnes

Tél.: (1) 506.42.75 Tx: 614 596

SUPERKIT 6809

flex, macro-assembleur, Xbasic, pascal, "C"...

DATA R.D.

Rue Gaspard Monge Z.I. de l'Armailler 26500, BOURG-lès-VALENCE

Téléphone: (75) 42-27-25

Le **SUPERKIT 6809** est un outil idéal pour aborder très facilement et progressivement le microprocesseur. Ses 30 afficheurs (12 pour la version à 3600 F. HT) vous permettent de visualiser l'intérieur du $\mu P.$, des zones de mémoires ou de piles, et même les interfaces du genre PIA par 8 octets à la fois.

Le SUPERKIT 6809 possède également des émulateurs logiciels (6800, 8085, Z80...) très intéressants pour la formation. Cependant, son point fort est sa faculté d'extension en outil de développement faible coût : un FLEX 09 très complet, un macroassembleur relogeable et même le fameux langage "C" compatible UNIX V7 (code linkable et romable). Ceci, sans oublier les 16 bits : un cross-asmb. 68000 (8086/16000 à l'étude).

Avec le **SUPERKIT 6809**, on est loin du kit à 6 afficheurs des années 70. Il permet aux électroniciens "d'avenir" de démarrer petit (code hexa.) tout en voyant grand (langage "C", 16 bits). Marques déposées: FLEX = TSC, UNIX = BELL labs., Z80 = Zilog

ENERTEC-SCHLUMBERGER

Département Appareils de Mesure (F)

Capteurs de mesure de vitesse en rotation Fabricant :

ENERTEC-SCHLUMBERGER

Département Appareils de Mesure

12, place des Etats-Unis, BP 620 92542 Montrouge Cedex

Tél.: (1) 657.11.23 Tx: 204 376

ENERTEC-SCHLUMBERGER

Département Instruments

(F)

Capteurs de pression, force, déplacement et accélération (industrie et aéronautique).

Fabricant:

ENERTEC-SCHLUMBERGERDépartement Industrie

1, rue Nieuport 78140 Vélizy Tél.: (3) 946.96.50

Tx: 698 267

ENRAF-NONIUS

(Pays-Bas)

Capteurs de mesure de niveau ; capteurs de température à résistances (platine, nickel, cuivre).

ENRAF NONIUS FRANCE

3, rue Troyon 75017 Paris

Tél.: (1) 380.35.12 Tx: 641 164

ENTRAN

(F)

Capteurs de force, accélération et pression à jauges. Fabricant :

ENTRAN

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

ERICHSEN

(RFA)

Capteurs de force à jauges de contrainte Importateur :

ERICHSEN

68, rue de Paris

93804 Epinay-sur-Seine Cedex

Tél.: (1) 823.07.70 Tx: 612 973

ETA

(Suisse)

Capteurs de température piézo-électriques Importateur :

FUTUR IDS

4, rue des Bons-Raisins 92500 Rueil-Malmaison Tél. : (1) 749.43.05

Tx.: 204 012

EUCHNER

(RFA)

Capteurs de proximité inductifs ; codeurs angulaires absolus optoélectroniques ; capteurs mécaniques.

Importateur:

SORELIA S.A.

51-53, rue Edouard-Vaillant 92704 Colombes Cedex Tél.: (1) 242.29.03

Tx: 610 248

F.G.P. INSTRUMENTATION

(F)

Capteurs de pression et de force à jauges. S.C. et métalliques ; couplemètres à jauges.

Fabricant:

F.G.P. INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

FIGARO

(Japon)

Détecteurs de gaz à S.C. ; moniteurs de combustion. Importateur :

PRISME

130, rue Jean-Pierre-Timbaud

92400 Courbevoie Tél. : (1) 788.19.17 Tx : 630 406

FISCHER CONTROLS

(F)

Débitmètres; capteurs-transmetteurs de température et de niveau.

Fabricant:

FISCHER CONTROLS

rue de la Tour, Abrest, BP 24

03202 Vichy Cedex Tél.: (70) 32.01.33 Tx: 990 939

FLUMESURE

(F)

Débitmètres Fabricant :

FLUMESURE SARL

Cidex 7, Surcy 27510 Tourny Tél.: (32) 52.30.27 Tx: 770 581

FOXBORO

(USA)

Capteurs de pression, température, vitesse de rotation; sondes d'humidité; débitmètres.

Importateur:

FOXBOROFRANCE

Rue des Osiers, Z.A. Vert-Galant, BP741

95004 Cergy-Pontoise Cedex

Tél.: (3)037.88.55 Tx: 697019

FOXBORO I.C.T.

(USA)

Capteurs-transmetteurs de pression à jauges S.C. Importateur :

MESUREUR

72-76, rue du Château-des-Rentiers 75013 Paris

Tél. : (1) 583.66.41

Tel.: (1) 583.66.4 Tx: 200 661

FURNESS CONTROL

(G.B.)

Capteurs-transmetteurs de faibles pressions Importateur :

MESUREUR

72-76, rue du Château-des-Rentiers

75013 Paris Tél.: (1) 583.66.41 Tx: 200 661

GEFRAN

(Italie)

Capteurs de température (thermocouples et sondes platine) ; capteurs de déplacement et de pression. Importateur :

ELCOWA

16, rue Jules-Siegfried, BP 2475 68057 Mulhouse Cedex

Tél.: (89) 43.54.58 Tx: 881 733

GEMS

(USA)

Détecteurs de niveau (potentiométriques et ILS) et de débit (inductifs et ILS).

Importateur:

AURIEMA FRANCE

Z.A. des Marais

1, avenue de la Marne, BP 131 94122 Fontenay-sous-Bois Cedex

Tél.: (1) 876.11.03 Tx: 680 124

GENISCO

(USA)

Capteurs de déplacements linéaires (potentiométriques) ; capteurs de vitesse, pression et effort. Importateur :

T.M.E.

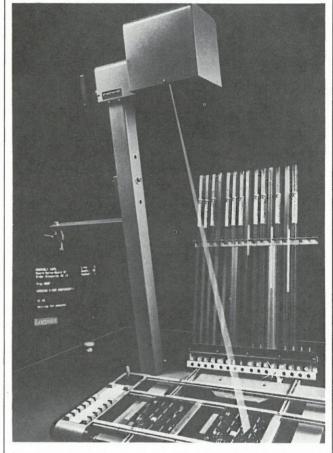
20, rue de la Chapelle 78630 Orgeval Tél. : (3) 975.63.63

Tx: 270 105

GEORGIN

(F)

Capteurs-transmetteurs de pression à jauges ; thermostats ; pressostats ; relais à seuil (température). Fabricant :


GEORGIN

16, avenue de Verdun 92320 Châtillon Tél. : (1) 656.52.34

Tx: 200 586

SYSTÈME INFORMATIQUE LOGPOINT POUR L'INSERTION DES COMPOSANTS SUR LES CIRCUITS IMPRIMÉS.

LE PARCOURS SANS FAUTE.

Pour insérer les composants plus rapidement, plus sûrement, plus facilement, voici le LOGPOINT. Un nouvel outil informatique dont l'écran affiche le type de composant à insérer, un magasin présente le godet le contenant et un faisceau lumineux sa position et son sens d'insertion. Le LOGPOINT de WINEX supprime ainsi la période de formation d'un personnel non spécialisé et annule tout risque d'erreur. Découvrez-le dès maintenant. Il est distribué par : MJB 153, avenue Jean-Jaurès - 93307 AUBERVILLIERS CEDEX - Tél. : 834.27.32.

winex

153, AV JEANJAURÈS
93307 AUBERVILLIERS CEDEX
TEL.: 834.27.32.

Faites-moi parvenir une documentation complète sur le système d'insertion informatique LOGPOINT. Voici mes coordonnées:
Nom: _______ Prénom: _______
Fonction: _______
Société: ________
Adresse: ________
Téléphone: _______

SERVICE-LECTEURS Nº 46

GOULD

(USA)

Capteurs de pression à jauges couche mince Importateur :

ALCYON ELECTRONIQUE

3, rue de la Haise 78370 Plaisir Tél. : (3) 055.77.17 Tx : 697 828

G.S.E.

(USA)

Capteurs de force à ponts de jauges métalliques Importateur :

F.G.P. INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

GULTON

(USA)

Capteurs de température ; pyromètres I.R.

Importateur: **GULTON**

58, rue Gounod 92210 Saint-Cloud Tél.: (1) 602.25.33 Tx: 200 268

HARTMANN ET BRAUN

(RFA)

Capteurs de pression, de proximité et de débit inductifs ; capteurs de température, de rotation ; capteurs de mesure de PH, résistivité et gaz.

Importateur:

HARTMANN ET BRAUN FRANCE

« Les Mercuriales », 40, rue Jean-Jaurès 93176 Bagnolet Cedex

Tél.: (1) 362.13.15 Tx: 212 029

HEIDENHAIN

(RFA)

Codeurs angulaires optiques ; capteurs de déplacements linéaires (règles).

Importateur:

HEIDENHAIN FRANCE

47, avenue de l'Europe 92310 Sèvres

Tél.: (1) 534.61.21 Tx: 260 974

HEIMANN

(RFA)

Capteurs opto électroniques et pyroélectriques Importateur :

SIEMENS S.A.

39-47, boulevard Ornano 93200 Saint-Denis Tél.: (1) 820.61.20

Tx: 620 853

HEITO

(F)

Capteurs de température (sonde platine); thermostats; capteurs pour mesures de pH, conductivité, potentiel redox, oxygène dissous, chlore.

Fabricant:

HEITO

13, rue Augereau 75007 Paris

Tél.: (1) 551-33.32 Tx: 240 918 Trace 572

HERAEUS

(RFA)

Capteurs de température (thermocouples, so les platine et nickel)

Importateur:

HERAEUS FRANCE

BP 18

91401 Orsay

Tél.: (6) 907.65.00 Tx: 600 037

HEWLETT-PACKARD

(USA)

Capteurs de déplacement inductifs

Importateur:

HEWLETT PACKARD FRANCE

Parc d'activités du Bois-Briard

91040 Evry Cedex Tél.: (6) 077.83.83

Tx: 600 048

HITEC

(USA)

Capteurs de déplacement capacitifs sans contact très haute résolution

Importateur:

LE GROUPE SCIENTIFIQUE

114, avenue du Président-Wilson 93212 La Plaine-Saint-Denis Cedex

Tél.: (1) 243.22.44 Tx: 611 976

HOHNER AUTOMATION

(F)

Capteurs de position angulaire optiques; capteurs de déplacement linéaires optiques.

Fabricant:

HOHNER AUTOMATION

25, rue de Friedolsheim 67200 Strasbourg Tél. : (88) 30.46.08

Tx: 880.351

HONEYWELL

(F)

Capteurs de proximité inductifs ; capteurs de pression, température, courant (S.C.) ; capteurs optoélectroniques

Fabricant:

HONEYWELL S.A., Division Composants,

4, avenue Ampère, 78390 Bois d'Arcy Tél. : (3) 043.81.31

Tx: 695 513

HOTTINGER BALDWIN MESSTECHNIK

(RFA)

Capteurs de déplacement, force, couple et pression Importateur :

SCHENCK S.A.

Chemin Neuf, BP 17 78240 Chambourcy Tél.: (3) 965.56.60

Tx: 695 632

HY-CAL

(USA)

Sondes de température (thermocouples, platine); capteurs d'humidité; calorimètres.

Importateur:

MAIR

9 bis, avenue De-Lattre-de-Tassigny 92100 Boulogne

Tél.: (1) 604.81.11 Tx: 360 650

I.B.V.

(RFA)

Thermotimbres Importateur

MAIR

9 bis, avenue De-Lattre-de-Tassigny

92100 Boulogne Tél.: (1) 604.81.11 Tx: 360 650

n°2 à n°10

INDIKON

(USA)

Capteurs de proximité inductifs Importateur :

FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

INOR

(Suède)

Capteurs-transmetteurs de température Importateur:

PYRO CONTROLE

244, avenue Franklin-Roosevelt, BP 55 69513 Vaulx-en-Velin Cedex

Tél.: (7) 237.13.77 Tx: 900 126

INTEK

USA)

Débitmètres thermiques (liquides et gaz) Importateur :

MAIR

9 bis, avenue De-Lattre-de-Tassigny,

92100 Boulogne Tél.: (1) 604.81.11 Tx: 360 650

VISSERIE AMERICAIDE Acier et Inox Transferie

BAFA

BOULONNERIE AUTOMOBILE | Nom _ | Adress | | Adress | |

Demande de documentation BAFA à:

BAFA 168 Rte de l'Empereur, 92500 Rueil Malmaison
Tél: (1) 749.20.00

Nom ______Société _____ Adresse _____Tél ____

Egalement en stock

790.83.03

Ø 1/4 à 1" 1/2

INTERFACE

(USA)

Cellules de force Importateur :

T.I.I.

37 bis, rue de la Mairie, Villejust

91120 Palaiseau Tél.: (6) 014.03.44

Tx: 691 031

INTERSIL

(USA)

Capteurs de température à S.C. Importateur :

INTERSIL DATEL SARL

217, bureaux de la Colline

92213 Saint-Cloud Tél.: (1) 602.57.11 Tx: 204 280

IONITHERM

(F)

Capteurs de température (thermocouples, sondes platine)

Fabricant:

IONITHERM

4, rue Clotilde-Gaillard 93100 Montreuil Tél. : (1) 858.22.22

Tx: 210 023

IRCON PYROMETERS

(USA)

Capteurs pyrométriques à I.R.

Importateur:

IRCON PYROMETERS

Parc aux Vignes, 9, allée des Vendanges Croissy-Beaubourg

77200 Torcy Tél.: (6) 006.78.67 Tx: 690 546

ISABELLEN HUTTE

(RFA)

Capteurs de température, flux d'air et flux thermique Importateur :

BALLOFET S.A.

4, rue Brunel 75017 Paris

Tél.: (1) 755.69.81 Tx: 660 844

ITEK

(USA)

Codeurs optiques angulaires (incrémentaux et absolus) très haute résolution

Importateur:

SEDEME

11, rue Simonet 75013 Paris

Tél.: (1) 580.72.00 Tx: 200 676

IVO

(RFA)

Codeurs incrémentaux optiques et inductifs Importateur :

IVO INDUSTRIES

3, rue Denis-Papin, Z.I. Strasbourg Sud, BP 103 67403 Illkirch Cedex

Tél.: (88) 65.00.55 Tx: 890 453

JAY ELECTRONIQUE

(F)

Capteurs optiques et opto électroniques; capteurs I.R.; radar hyper.

Fabricant:

JAY ELECTRONIQUE

route de Chartreuse, Corenc, BP 24 38700 La Tronche

Tél. : (76) 88.01.81 Tx : 320 659

JENSEN

(Danemark)

Capteurs de pression à ponts de jauges métalliques ; capteurs de déplacement inductifs.

Importateur:

FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

POUR TERMINAUX — INFORMATIQUES

FILTRE OPTIQUE ORDI-FLEX - ANTI EBLOUISSANT -

- Filtre en fibres de nylon noires micro-mono filament tissées
- Confort de l'opérateur (trice) (réduction de l'éblouissement: trop de clarté, éclairage suspendu)
- Rapidité des opérations
- Plus de 70 modèles
- Suivant la marque du computer et la référence du terminal : IBM, CII/HB, WANG, PHILIPS, BURROUGHS etc...
- De plus le filtre offre l'avantage de prolonger la vie du tube cathodique. (contraste moins poussé).

INSTALLATION FACILE:

- Simplement inseré dans l'encadrement et devant le tube de la console.

INFORMATICIENS — INFORMEZ-VOUS!

32 rue Fessart - 92100 BOULOGNE Tel. : (1) 604 81 11 Tlx : 260 650

SERVICE-LECTEURS Nº 58

JPB

(F)

Capteurs de pression et d'accélération à jauges de contrainte ; sondes de température.

Fabricant:

JPB

11, rue Lapérouse 78390 Bois d'Arcy Tél. : (1) 460.13.55 Tx : 695 626

JPC

(F)

Capteurs de température (thermistances, thermocouples, sondes platine); capteurs d'humidité relative; thermostats; détecteurs de débit gazeux Fabricant:

JPC

Route de Chalifert, BP 14, Coupvray 77450 Esbly Tél.: (6) 004.35.19

Tx: 692 724

J TEC

(USA)

Débitmètres Vortex ; anémomètres.

Importateur : MAIR

9 bis, avenue De-Lattre-de-Tassigny

92100 Boulogne Tél. : (1) 604.81.11 Tx : 360 650

JUMO REGULATION

(F)

Capteurs de pression (piézo, jauges); capteurs de température; capteurs d'humidité.

Fabricant:

JUMO REGULATION

7, rue des Drapiers, BP 5031

57071 Metz Cedex Tél.: (8) 736.16.86 Tx: 930 464

KAMAN SCIENCES

(USA)

Capteurs de déplacement à courants de Foucault ; capteurs de pression, accélération et déplacement pour environnement nucléaire.

Importateur:

LE GROUPE SCIENTIFIQUE

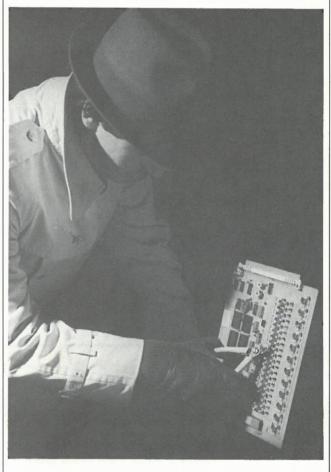
114, avenue du Président-Wilson 93212 La Plaine-Saint-Denis Cedex

Tél.: (1) 243.22.44 Tx: 611 976

KAVLICO

(USA)

Capteurs de pression capacitifs Importateur :


FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

PINCES COUPANTES LINDSTROM

LES HYPER PROS.

Des études techniques approfondies ont conduit Lindström à concevoir et à réaliser les pinces coupantes peut-être les plus performantes au monde :

forme ergonomique, gaines de poignées interchangeables, capacité de coupe remarquable, fiabilité au-delà des normes traditionnelles.

Découvrez-les des maintenant. Elles sont distribuées par : MJB 153, avenue Jean-Jaurès 93307 AUBERVILLIERS CEDEX Tél.: 834,27.32.

S LINDSTRÖM

153, AV. JEAN-JAURĖS 93307 AUBERVILLIERS CEDE TEL.: 834.27.32.	× m b	
Faites-moi connaître spéciale "série 80".	e les conditions actuelles de votre of	fre
Faites-moi parvenir gamme des pinces l	une documentation complète sur Lindström. Voici mes coordonnées :	la
Nom :	Prénom :	E
Société :	Fonction :	
Adresse :	40-24-	
	Téléphone :	_

KIPP & ZONEN

(Pays-Bas)

Capteurs de rayonnement solaire

Importateur:

ENRAF NONIUS FRANCE

3, rue Troyon 75017 Paris

Tél.: (1) 380.35.12

Tx: 641 164

KISTLER

(Suisse)

Capters piézo-électriques de force, pression et accélération; capteurs de pression piézorésistifs Importateur:

SEDEME

11, rue Simonet 75013 Paris

Tél.: (1) 580.72.00 Tx: 200 676

KROHNE

(F)

Capteurs de débit (électromagnétiques, à flotteur, à ultrasons), de niveau (à flotteur, capacitifs) et de densité (à rayons gamma).

Fabricant:

KROHNE

Quartier des Ors, BP 258 26106 Romans Cedex Tél.: (75) 02.19.17

Tx: 345 153

KULITE

(USA)

Capteurs de pression à jauges de contrainte Importateur :

JPB

11, rue Lapérouse 78390 Bois d'Arcy Tél. : (1) 460.13.55 Tx : 695 626

LABEM

(F)

Capteurs de pression (potentiométriques, inductifs, capacitifs et piézorésistifs); capteurs de température (sondes platine et nickel); capteurs de position angulaire potentiométriques (aéronautique).

Fabricant:

LABEM

11, rue Benjamin-Raspail 92240 Malakoff

Tél.: (1) 655.90.24 Tx: 202 355

LCC-CICE

(F)

Capteurs de température (thermistances)

Fabricant:

LCC-CICE

50, rue Jean-Pierre Timbaud 92400 Courbevoie

Tél.: (1) 788.50.60 Tx: 204 780

PROGRAMMATEURsimulateur de REPROM

4980f^{**}...9750f^{**}

Equipé d'un puissant 6809, le RD28 est un programmateursimulateur tout à fait remarquable pour son prix :

- RAM CMOS de 128 Kbits, extensible à 256/512 Kbits.
- RAM sauvegardée sur batterie ; rétention : 1 an.
- RS232C multi-formats (S1/S9, Intel hex, Tek hex...16 bits)

• Simulation REPROM par RAM 150 nS..

- Tous les circuits sur supports (enfin, de l'intelligence!).
- Contrôle par check sum ou CRC16 (fiabilité accrue).
- Aucun monochip introuvable; composants standards.
- Aucune carte personnalisée onéreuse. Sélection par DIL24.
 Fabrication française: aucune taxe d'importation (douane,
- frêt, change ...). Aucun intermédiaire de revente. Livré avec schémas et docs. en français d'origine.

(*) Prix H.T., au 1/5/84, port et emballages en sus. Les câbles (simulation, RS232) ne sont pas compris. Le prix 4980 F. HT correspond à la version "monocarte", en ordre de marche et testée, mais sans alims. ni coffret.

DATA R.D. 🌌

Rue Gaspard Monge Z.I. de l'Armailler 26500, BOURG-lès-VALENCE

Téléphone: (75) 42-27-25

LEINE & LINDE

(Suède)

Codeurs absolus : capteurs linéaires optiques.

Importateur:

SORELIA S.A.

51-53, rue Edouard-Vaillant 92704 Colombes Cedex

Tél.: (1) 242.29.03 Tx: 610 248

LEUZE ELECTRONIC

(RFA)

Capteurs photoélectriques (détection directe, réflexion, barrage)

Importateur:

LEUZE ELECTRONIQUE SARL

BP 36, Z.I. de Noisiel

77426 Marne-la-Vallée Cedex 2

Tél.: (6) 005.12.20 Tx: 691 859

MACESSA

(Espagne)

Barrières I.R. Importateur:

AMG

5. cours Edouard-Vaillant

33300 Bordeaux Tél.: (56) 39.63.25

Tx:

MAGTECH

(USA)

Génératrices tachymétriques pour très faibles vitesses

Importateur:

SOCITEC

Z.I. du Prunay, 37-41, rue Benoît-Frachon 78500 Sartrouville

Tél.: (3) 914.00.18

Tx: 696 591

MAPCO

(USA)

Débitmètres ultrasoniques Doppler; analyseurs de concentration.

Importateur:

MAIR

9 bis, avenue De-Lattre-de-Tassigny 92100 Boulogne

Tél.: (1) 604.81.11 Tx: 360 650

MARELLI AUTRONICA

(Italie)

Capteurs de pression piézo

Importateur:

MAGNETI MARELLI FRANCE

17, avenue Bosquet 75007 Paris

Tél: (1) 555.12.95 Tx: 204 661

MCB

(F)

Capteurs de déplacement résistifs et codeurs angulaires optiques

Fabricant:

MCB

11, rue Pierre-Lhomme, BP 65

92400 Courbevoie Tél.: (1) 788.51.20 Tx: 620 284

MECILEC

(F)

Capteurs de pression à jauges de contrainte

Fabricant:

MECILEC

91 bis. rue du Cherche-Midi

75006 Paris

Tél.: (1) 549.02.60 Tx: 201 853

MEDTHERM

(USA)

Thermocouples ultra-rapides; capteurs de flux thermiaue.

Importateur:

EQUIPEMENTS SCIENTIFIQUES

54, rue du 19-Janvier 92380 Garches Tél.: (1) 741.90.90

Tx: 204 004

MENSOR

(USA)

Capteurs-transmetteurs de pression à balance de force très haute précision

Importateur:

MESUREUR

72-76, rue du Château-des-Rentiers

75013 Paris Tél.: (1) 583.66.41

Tx: 200 661

MICRO GAGE

(USA)

Capteurs de pression relative (ponts de jauge) Importateur:

EUROPAVIA

6-8, rue Ambroise-Croizat, Z.I. des Glaises

91120 Palaiseau Tél.: (6) 930.50.50 Tx: 692 113

MICRO-MEASUREMENT

Jauges pour fabrication de capteurs (pression, pesage)

Importateur:

VISHAY MICROMESURES

98. boulevard Gabriel-Péri, B.P. 51

92242 Malakoff Cedex Tél.: (1) 655.98.00

Tx: 270 140

MIDORI

(Japon)

Capteurs de déplacement linéaire et angulaire (potentiométriques et magnétorésistifs)

Importateur:

TME

20, rue de la Chapelle 78630 Orgeval Tél. : (3) 975.63.63

Tx: 270 105

MINCO

(USA)

Sondes de température résistives ; thermocouples Importateur :

AUXITROL

1, rue d'Anjou, BP 241 92603 Asnières Tél. : (1) 790.62.81

Tx: 620 359

MOORE REED

(G.-B.)

Codeurs angulaires Importateur :

REA

9, rue Ernest-Cognacq, BP 5 92301 Levallois Cedex Tél.: (1) 758.11.11

Tx: 620 630

MORS INSTRUMENTATION

(F)

Capteurs de température (thermocouples, sondes platine) ; capteurs-transmetteurs de pression à jauges S.C., piézorésistives et résistives.

Fabricant:

MORS INSTRUMENTATION

42, rue Benoît-Frachon 93000 Bobigny Tél. : (1) 843.61.64

Tx: 210 565

MORS PESAGE

(F)

Capteurs de force et de pesage à jauges résistives Fabricant :

MORS PESAGE

2-4, rue Isaac-Newton 93150 Le Blanc-Mesnil Cedex

Tél.: (1) 865.44.37 Tx: 213 793

MUIRHEAD VATRIC COMPONENTS

(G.-B.)

Codeurs angulaires optiques; synchros. Importateur:

MUIRHEAD FRANCE

6, rue du Fer-à-Cheval, ZI 95200 Sarcelles

Tél.: (3) 419.01.14 Tx: 697 400

NATIONAL SEMICONDUCTOR

(USA)

Capteurs de température à S.C.

Importateur:

NATIONAL SEMICONDUCTOR FRANCE

28, rue de la Redoute 92260 Fontenay-aux-Roses

Tél.: (1) 660.81.40 Tx: 250 956

NOVASINA

(Suisse)

Capteurs d'humidité relative (chimiques)

Importateur:

CHAUVIN-ARNOUX

190, rue Championnet

75018 Paris

Pél.: (1) 252.82.55

Tx: 280 589

NOVOTECHNIK

(RFA)

Capteurs de déplacement linéaires et rotatifs (résistifs et inductifs)

Importateur:

EQUIPIEL

218 bis, boulevard Pereire

75017 Paris

Tél.: (1) 574.14.97

Tx:

OMEGA ENGINEERING

(USA)

Capteurs de température et de pression

Importateur:

EQUIPEMENTS SCIENTIFIQUES

54, rue du 19-Janvier 92380 Garches Tél. : (1) 741.90.90 Tx : 204 004

OMRON

(Japon)

Détecteurs de proximité inductifs et capacitifs ; cellules photoélectriques.

Importateur:

CARLO GAVAZZI OMRON SARL

27-29, rue Pajol 75018 Paris Tél. : (1) 200.11.30 Tx : 240 062

PANAMETRICS

(USA)

Capteurs à ultrasons pour applications diverses Importateur :

SOFRANEL

59, rue Parmentier 78500 Sartrouville Tél. : (3) 913.82.36

Tx: 697 053

P.C.B.

(USA)

Capteurs de force et de pression piézo-électriques ; accéléromètres.

Importateur:

EUROPAVIA

6-8, rue Ambroise-Croizat, Z.I. des Glaises 91120 Palaiseau

Tél.: (6) 930.50.50 Tx: 692 113

PENNY & GILES CONDUCTIVE PLASTICS

(G.-B.)

Capteurs de déplacement inductifs et résistifs Importateur:

BALLOFET S.A.

4. rue Brunel 75017 Paris

Tél.: (1) 755.69.81 Tx: 660 844

PENNY & GILES POTENTIOMETERS

(G.-B.)

Capteurs de déplacement linéaires et angulaires (potentiométriques ou à transfo différentiel); inclinomètres inductifs et potentiométriques.

Importateur:

SEDEME

11, rue Simonet 75013 Paris

Tél.: (1) 580.72.00 Tx: 200 676

PHILIPS

(RFA)

Capteurs de pression, de couple, d'accélération et de force à jauges; capteurs de déplacement à transfo différentiel; capteurs de vibration (électrodynamiques et à courants de Foucault).

Importateur:

PHILIPS SCIENCES ET INDUSTRIE

105, rue de Paris 93002 Bobigny Tél.: (1) 830.11.11 Tx: 210 290

PHITRONIQUE

(F)

Capteurs inductifs et capacitifs de détection Fabricant:

PHITRONIQUE

19, boulevard de Lorraine 95240 Cormeilles-en-Parisis

Tél.: (3) 978.61.38 Tx: 697 094

PHOTO SWITCH

(USA)

Capteurs photoélectriques (détection) Importateur:

PHITRONIQUE

19, boulevard de Lorraine, BP14 95240 Cormeilles-en-Parisis

Tél.: (3) 978.61.38 Tx: 697 094

DOUBLE FACES... MULTI-COUCHES... DOUBLE FACES... MULTI-CO **DESSOUDER**La Performance **ENSEMBLE DESSOUDEUR** AIR COMPRIMÉ 30 W ou 24 V/30 W TYPES 60-350 ou 61-351 **ENSEMBLE DESSOUDEUR AUTONOME** TYPE 60-180 EFFICACITÉ: PHILIPS Puissance d'aspiration 600 mm Hg. Récupération thermique rapide. Régulation de To par saturation facilitant le refroidissement du circuit. SÉCURITÉ: Isolation céramique. Masse et terre séparables. **ERGONOMIE:** Pistolet léger, maniable. Société Fonction DEPARTEMENT EQUIPEMENTS

Adresse

ET TECHNIQUES POUR L'INDUSTRIE 37, RUE DE BITCHE / 92400 COURBEVOIE / TEL. 334.31.51

L'ÉLECTRONIQUE, C'EST L'AFFAIRE DE PHILIPS.

Code Postal

X

Veuillez m'envoyer une documentation gratuite

PHYTRANS

(F)

Capteurs de proximité et e déplacement (linéaires et angulaires) inductifs et résistifs ; capteurs de pression résistifs ; accéléromètres asservis inductifs ; anémomètres et débitmètres capacitifs et opto-électroniques.

Fabricant:

PHYTRANS

18, chemin du Fond-du-Chêne 78620 L'Etang-la-Ville

Tél.: (3) 958.71.64 Tx: 696 243

P.M.E

(RFA)

Capteurs de température (thermocouples, sondes platine)

Importateur:

FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

P.M.I.

(F)

Capteurs de position résistifs (multitours)

Fabricant:

LE PROTOTYPE MECANIQUE INDUSTRIE

23, rue Pasteur

78620 L'Etang-la-Ville Tél.: (3) 958.71.64

Tx: 696 243

POCLAIN HYDRAULIQUE

(F)

Capteurs de pression résistifs pour hautes pressions Distributeur :

T.A.A.

10, rue Désiré-Granet 95102 Argenteuil Tél.: (3) 981.52.62 Tx: 695 737

PRECISE SENSOR

(USA)

Capteurs de pression à jauges de contrainte pour conditions rudes

Importateur:

ERICHSEN

68, rue de Paris

93804 Epinay-sur-Seine Cedex

Tél.: (1) 823.07.70 Tx: 612 973

PROXITRON

(RFA)

Capteurs de proximité inductifs et capacitifs ; détecteurs de flux d'air.

Importateur:

GEC COMPOSANTS

2, rue Henri-Bergson 92600 Asnières Tél. : (1) 790.62.15

Tx: 610 471

PYRO CONTROLE

(F)

Capteurs de température (thermocouples et sondes platine)

Fabricant:

PYRO CONTROLE

244, avenue Franklin-Roosevelt, BP 55 69513 Vaulx-en-Velin Cedex

Tél.: (7) 237.13.77 Tx: 900 126

RADIO CONTROLE

(F)

Capteurs de pression résistifs et à S.C.

Fabricant:

RADIO CONTROLE S.A.

3, rue de Chaillouet 10002 Troyes Cedex Tél.: (25) 81.08.45 Tx: 840 715

RAFI

(RFA)

Capteurs de pression de liquides inductifs ; capteurs de température (thermistances).

Importateur

RAFI FRANCE

« Le Central », 430 La Courtine-Mont-d'Est 93160 Noisy-le-Grand Tél. : (1) 304.98.76

Tx: 212 012

RDF

(USA)

Capteurs de température (thermocouples, sondes platine); capteurs de flux.

Importateur:

FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

RICHARD ET PEKLY

(F)

Capteurs de force

Fabricant:

JULES RICHARD ET PEKLY

116, quai de Bezons 95102 Argenteuil Tél. : (3) 947.09.36

Tx: 698 719

ROBERT GOETZ

(F)

Détecteurs de proximité inductifs et capacitifs Fabricant :

ROBERT GOETZ ET CIE

85, rue du Château-Zu-Rhein 68059 Mulhouse Cedex Tél.: (89) 59.25.11

Tx: 881 856

ROSEMOUNT

(USA)

Capteurs de pression capacitifs; capteurs de température (thermocouples, sondes platine).

Importateur:

ROSEMOUNT FRANCE

1, place des Etats-Unis, Silic 265

94578 Rungis Cedex Tél. : (1) 687.26.12 Tx : 204 920

RTC

(F)

Capteurs de température et de lumière optoélectroniques; capteurs de température I.R.; thermistances; varistances; capteurs de pression et de proximité.

Fabricant:

RTC-LA RADIOTECHNIQUE-COMPELEC

130, avenue Ledru-Rolin 75540 Paris Cedex 11 Tél. : (1) 338.80.00 Tx : 680 495

RUSKA

(USA)

Capteurs de pression de gaz; balances à point mort.

Importateur:

LE GROUPE SCIENTIFIQUE

114, avenue du Président-Wilson 93212 La Plaine-Saint-Denis Cedex

Tél.: (1) 243.22.44 Tx: 611 976

SAGEM

(F)

Synchros; capteurs d'accélération et de vitesse angulaire.

Fabricant:

SAGEM

6, avenue d'Iéna 75783 Paris Cedex 16 Tél. : (1) 723.54.55 Tx : 611 890

SAMSON REGULATION

(F)

Sondes platine; capteurs d'humidité relative; capteurs de pression.

Fabricant:

SAMSON REGULATION

5-7, rue Henri 69604 Villeurbanne Tél. : (7) 893.22.28 Tx : 300 267

SAPHYR

(F)

Capteurs de température à S.C. ; thermocouples. Fabricant :

SAPHYR S.A.

44, rue de Terre-Neuve 75020 Paris

Tél.: (1) 370.48.90 Tx: 215 331

SCANIVALVE

(USA)

Capteurs de pression à jauges de contrainte Importateur :

IMELEX

Cidex A607

94398 Orly Aérogare Tél.: (1) 687.15.08 Tx: 250 303

SCHAEVITZ

(F)

Capteurs de déplacement à transfo différentiel; accéléromètres et inclinomètres asservis (linéaires et angulaires); capteurs de pression inductifs et à iauges.

Fabricant:

SCHAEVITZ

RN 13, Centre Art de Vivre, BP 78

78630 Orgeval Tél.: (3) 975.80.40 Tx: 695 321

SCHNEIDER ELEKTRONIK

(RFA)

Détecteurs de passage optoélectroniques Importateur :

SORELIA S.A.

51-53, rue Edouard-Vaillant 92704 Colombes Cedex Tél.: (1) 242.29.03

Tx: 610 248

SCHÖNBUCH

(RFA)

Capteurs inductifs et capacitifs

Importateur:

HENGSTLER CONTROLE NUMERIQUE

94-106, rue Blaise-Pascal, Z.I. des Mardelles, BP 77 93602 Aulnay-sous-Bois

Tél.: (1) 866.22.90 Tx: 212 486

SEDEME

(F)

Capteurs de force et de pression (jauges, transfo différentiel)

Fabricant:

SEDEME

11, rue Simonet 75013 Paris

Tél.: (1) 580.72.00 Tx: 200 676

SELEMAT

(Suisse)

Capteurs de proximité inductifs Importateur :

AMG

5, cours Edouard-Vaillant 33300 Bordeaux

Tél.: (56) 39.63.25

Tx:

SENSOTEC

(USA)

Capteurs de force et de pression à jauges métal et S.C.

Importateur:

ENDEVCO

76, rue des Grands-Champs

75020 Paris Tél. : (1) 373.43.59

Tx: 680 498

SENSYM

(USA)

Capteurs de pression piézorésistifs Importateur :

MECAPTELEC

BP21

40160 Parentis-en-Born

Tél.: (58) 78.43.72

Tx: 540 560

SENTEC

(Suisse)

Capteurs de déplacement inductifs Importateur :

FGP INSTRUMENTATION

26, rue des Dames, BP15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

SEREG

(F)

Capteurs-transmetteurs de pression à inductance variable ; débitmètres électromagnétiques.

Fabricant:

SEREG

Z.I, 100, rue de Paris, BP65

91302 Massy Cedex Tél. : (6) 930.22.02

Tx: 690 713

SERVO-TEK

(USA)

Capteurs de vitesse angulaire pour grandes vitesses (génératrices tachymétriques)

Importateur:

SOCITEC

Z.I. du Prunay, 37-41, rue Benoît-Frachon 78500 Sartrouville

Tél. : (3) 914.00.18

Tx: 696 591

SETRA

(USA)

Capteurs de pression et d'accélération capacitifs Importateur :

KOVACS

117, rue de la Convention

75015 Paris

Tél.: (1) 250.89.70 Tx: 250 839

SFERNICE

(F)

Capteurs de déplacements angulaires et linéaires (résistifs); capteurs de force, de pression et de température résistifs.

Fabricant:

SFERNICE

117, boulevard de la Madeleine, BP 17

06021 Nice Cedex Tél.: (93) 44.62.62 Tx: 470 261

SICK OPTIQUE ELECTRONIQUE

(F)

Capteurs optiques (cellules photoélectriques, détection de présence, de défauts, d'objets, sécurité).

Fabricant:

SICK OPTIQUE ELECTRONIQUE

Z.I. Paris Est, boulevard de Beaubourg

77200 Emerainville Tél. : (6) 005.90.15 Tx : 692 855

SIEMENS

(RFA)

Capteurs optoélectroniques, magnétiques, thermiques résistifs; capteurs de pression et de température à S.C.

Importateur:

SIEMENS S.A.

39-47, boulevard Ornano 93200 Saint-Denis Tél.: (1) 820.61.20

Tx: 620 853

SKAN-A-MATIC

(USA)

Capteurs optoélectroniques miniatures très haute résolution ; crayons lecteurs.

Importateur:

EUROMEGA S.A

20-22, place de Villiers 93107 Montreuil Cedex Tél. : (1) 858.90.09

Tx: 210 394

SOCITEC

(F)

Capteurs de vitesse angulaire (aéronautique) Fabricant :

SOCITEC

Z.I. du Prunay, 37-41, rue Benoît-Frachon 78500 Sartrouville

Tél.: (3) 914.00.18 Tx: 696 591

SOFRANEL

(F)

Capteurs à ultrasons (applications diverses) Fabricant :

SOFRANEL

59, rue Parmentier 78500 Sartrouville Tél.: (3) 913.82.36

Tx: 697 053

SORO ELECTRO-OPTICS

(F)

Capteurs de position linéaires (optiques); capteur de distance à laser.

Fabricant:

SORO ELECTRO-OPTICS

26, rue Berthollet, 94110 Arcueil

Tél. : (1) 657.12.83 Tx : 260 879 SOURIAU

(F

Capteurs à fibres optiques (applications diverses)

Fabricant:

SOURIAU ET CIE

9-13, rue du Général-Galliéni 92103 Boulogne-Billancourt

Tél.: (1) 609.92.00 Tx: 250 918

SPONSLER (USA)

Débitmètres à turbine

Importateur:

MAIR

9 bis, avenue De-Lattre-de-Tassigny

92100 Boulogne Tél. : (1) 604.81.11 Tx : 360 650

SPRAGUE

(USA)

Capteurs de flux lumineux et magnétiques (opto et effets Hall)

Importateur:

SPRAGUE FRANCE SARL

3, rue Camille-Desmoulins 94230 Cachan

Tél.: (1) 547.66.00 Tx: 250 697

STEMCO

(USA)

Thermostats (électro-ménager)

Importateur:

JPC

Route de Chalifert, BP 14, Coupvray

77450 Esbly Tél.: (6) 004.35.19 Tx: 692 724

STEUTE

(RFA)

Détecteurs magnétiques à relais reed

Importateur : **SORELIA**

51-53, rue Edouard-Vaillant 92704 Colombes Cedex Tél.: (1) 242.29.03

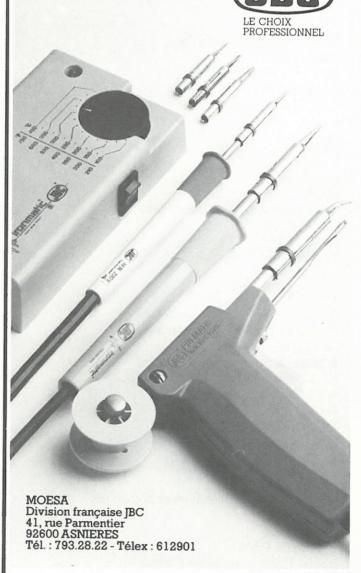
Tx: 610 248 SUNRITZ

(Japon)

Capteurs optiques miniatures de position angulaire

Importateur : **SOCITEC**

Z.I. du Prunay, 37-41, rue Benoît-Frachon


78500 Sartrouville Tél.: (3) 914.00.18 Tx: 696591

NOUS AIMONS LES PROBLEMES, PARCE QUE NOUS AVONS DES SOLUTIONS

Demandez notre catalogue et vous pourrez vérifier.

Notre large gamme de fers à souder type crayon, des stations à souder thermoréglées, de fers à souder avec apport de soudure, des stations à dessouder à pompe à vide et enfin une large variété de pannes et accessoires adaptables.

Si malgré tout vous ne trouvez pas la solution à vos problèmes appelez nous, nous sommes à votre disposition pour vous aider.

SERVICE-LECTEURS Nº 42

TANTRON

(Finlande)

Indicateurs de charge piézo-électriques

Importateur:

MAIR

9 bis, avenue De-Lattre-de-Tassigny

92100 Boulogne Tél.: (1) 604.81.11 Tx: 360.650

TAYLOR INSTRUMENT

(G.-B.)

Capteurs de température (tube de Bourdon); capteurs et capteurs-transmetteurs de débit; capteurs de pression électroniques et pneumatiques.

Importateur:

TAYLOR INSTRUMENT FRANCE

65, rue Henri-Barbusse

92110 Clichy Tél.: (1) 270.53.53 Tx: 613 907

T.C.E.I.

(F)

Capteurs inductifs (proximité, alarme-sécurité)

Fabricant:

T.C.E.I

21, rue Frédérick-Lemaître 75020 Paris

Tél.: (1) 366.66.58

Tx: 240 918

T.C.P.

(USA)

Thermocouples Importateur:

MAIR

9 bis, avenue De-Lattre-de-Tassigny

92100 Boulogne Tél.: (1) 604.81.11 Tx: 360 650

TEKEL

(Italie)

Codeurs optiques incrémentaux

Importateur:

SORELIA

51-53, rue Edouard-Vaillant 92704 Colombes Cedex Tél.: (1) 242.29.03

Tx: 610 248

TELEDYNE GUERLEY

(USA)

Codeurs optiques linéaires et angulaires Importateur :

ERICHSEN

68, rue de Paris

93804 Epinay-sur-Seine Cedex

Tél.: (1) 823.07.70 Tx: 612 973

TELEDYNE TABER

(USA)

Capteurs de pression à jauges de contrainte Importateur :

MECAPTELEC

BP 21, 40160 Parentis-en-Born

Tél.: (58) 78.43.72 Tx: 540 560

TERRA TECHNOLOGY

(USA)

Accéléromètres asservis (inductifs)

Importateur:

FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

TESTOTERM

(F)

Capteurs de température (thermocouples, sondes platine, thermistances); capteurs d'humidité capacitifs; capteurs de vitesse d'air; capteurs de vitesse et de rotation (inductifs et I.R.).

Fabricant:

TESTOTERM

8, rue de la Gare, BP 100 57602 Forbach Cedex Tél.: (8) 785.34.35

Tx: 860 153

TEXAS INSTRUMENTS

(F

Capteurs de température, pression et déplacement à S.C.

Fabricant:

TEXAS INSTRUMENTS FRANCE

BP 5

06270 Villeneuve-Loubet Tél.: (93) 20.01.01

Tx: 470 127

THERMANALYSE

(F

Sondes de température (thermocouples, sondes platine)

Fabricant:

THERMANALYSE

Z.A. La Piche, BP 15 38430 Moirans Tél.: (76) 35.38.24

Tx: 320 245

THERMINDEX

(G.-B.)

Peintures sensibles à la température; thermo-timbres.

Importateur:

MAIR

9 bis, avenue De-Lattre-de-Tassigny

92100 Boulogne Tél. : (1) 604.81.11 Tx : 360 650

THERMOCOAX

(F)

Capteurs de température (thermocouples, sondes platine); détecteurs de neutrons.

Fabricant:

THERMOCOAX

10, rue de la Passerelle 92150 Suresnes Tél.: (1) 772.09.42

Tx: 640 855

THERMO ELECTRIC

(Pays-Bas)

Capteurs de température

Importateur:

THERMO ELECTRIC

12, avenue des Coquelicots Z.A. Les Petits-Carreaux 94380 Bonneuil-sur-Marne

Tél.: (1) 339.72.84 Tx: 220 295

THERMO EST

(F)

Capteurs de température

Fabricant:

THERMO EST

140, rue de Reims, BP 33

57026 Metz

Tél.: (8) 765.48.13 Tx: 860 664

THOMSON CSF/DEM

Capteurs électromagnétiques (synchros, résolveurs, détecteurs d'écarts, potentiomètres inductifs linéaires, génératrices tachymétriques)

Fabricant:

THOMSON CSF/DEM

125, rue J.-J.-Rousseau 92130 Issy-les-Moulineaux

Tél.: (1) 642.93.44 Tx: 204 780

THORN EMI TECHNOLOGY

(G.-B.)

Capteurs inductifs de pression et de déplacement Importateur:

THORN EMI TECHNOLOGY

38, rue de la République 93100 Montreuil

Tél.: (1) 859.00.42 Tx: 212 786

TME

Capteurs de pression et d'effort à jauges Fabricant:

TME

20, rue de la Chapelle 78630 Orgeval Tél.: (3) 975.63.63

Tx: 270 105

TNC

(F)

Capteurs de température (thermocouples, sondes platine); capteurs de déplacement inductifs.

Fabricant:

TNC

178, rue Championnet

75018 Paris

Tél.: (1) 252.82.55 Tx: 280 589

TRANSDUCER SYSTEM

(USA)

Capteurs de déplacement et inclinomètres

Importateur:

ENDEVCO

76, rue des Grands-Champs

75020 Paris

Tél.: (1) 373.43.59 Tx: 680 498

TRANSPEK

(USA)

Capteurs angulaires capacitifs; capteurs inductifs linéaires de déplacement et de vitesse.

Importateur:

SOCITEC

Z.I. du Prunay, 37-41, rue Benoît-Frachon

78500 Sartrouville Tél.: (3) 914.00.18 Tx: 696 591

TSI

(USA)

Sondes e mesure de vitesse de fluides ; débitmètres (gaz); vélocimètres laser.

Importateur:

TSI FRANCE

68, rue de Paris

93804 Epinay-sur-Seine Cedex

Tél.: (1) 823.21.31 Tx: 612 973

TSK

(Japon)

Jauges de contrainte (extensométrie). Importateur:

EUROPAVIA

6-8, rue Ambroise-Croizat, Z.I. des Glaises 91120 Palaiseau

Tél.: (6) 930.50.50

Tx: 692 113

VACUUM SCHMELZE

(RFA)

Capteurs de courant à effet Hall Importateur:

BALLOFET S.A.

4, rue Brunel 75017 Paris

Tél.: (1) 755.69.81

Tx: 660 844

VAILASA

(Finlande)

Capteurs d'humidité capacitifs

Importateur:

TEKELEC-AIRTRONIC

Cité des Bruyères, rue Carle-Vernet, BP 2

92310 Sèvres Tél. : (1) 534.75.35 Tx : 204 552

VALIDYNE

(USA)

Capteurs de pression différentielle à réluctance varia-

Importateur:

EUROPAVIA

6-8, rue Ambroise-Croizat, Z.I. des Glaises

91120 Palaiseau Tél.: (6) 930.50.50 Tx: 692 113

VERNITECH

(USA)

Capteurs de déplacements linéaires et angulaires (potentiométriques)

Importateur:

TME

20, rue de la Chapelle 78630 Orgeval

Tél.: (3) 975.63.63 Tx: 270 105

VERNITRON

(USA)

Synchros et résolveurs annulaires et multipolaires (aéronautique)

Importateur:

SOCITEC

Z.I. du Prunay, 37-41, rue Benoît-Frachon

78500 Sartrouville Tél. : (3) 914.00.18 Tx : 696 591

VIATRAN CORPORATION

(USA)

Capteurs de pression à jauges métalliques Importateur :

FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

VIBRAC

(USA)

Couplemètres optiques

Importateur:

FGP INSTRUMENTATION

26, rue des Dames, BP 15 78340 Les Clayes-sous-Bois

Tél.: (3) 055.74.92 Tx: 695 539

VIBROMETER CORPORATION

(USA)

Capteurs de force et de pression ; accéléromètres.

Importateur:

T.I.I.

37 bis, rue de la Mairie, Villejust

91120 Palaiseau Tél.: (6) 014.03.44 Tx: 691 031

VISOLUX

(R.F.A.)

Cellules photoélectriques (applications diverses) Importateur :

ELCOWA

16, rue Jules-Siegfried, BP 2475 68057 Mulhouse Cedex

Tél. : (89) 43.54.58 Tx : 881 733

VULCAN

(USA)

Thermostats Importateur:

AUXITROL

1, rue d'Anjou, BP 241 92603 Asnières Tél. : (1) 790.62.81

Tx: 620 359

WHESSOE

(F)

Capteurs de niveaux (capacitifs, inductifs, à flotteur) Fabricant :

WHESSOE

rue de Bitche 62100 Calais

Tél.: (21) 96.49.93 Tx: 820 723

WIKA

(RFA)

Capteurs de pression effective (inductifs, piézorésistifs, effet Hall).

Importateur:

WIKA

9, chaussée Jules-César, BP 229, Osny

95523 Cergy-Pontoise Tél. : (3) 032.13.66

Tx: 697 552

YELLOW SPRING INSTRUMENT

(USA)

Thermistances de précision ; sondes de température (à point de rosée et étalon au platine).

Importateur:

MAIR

9 bis, avenue De-Lattre-de-Tassigny 92100 Boulogne

Tél. : (1) 604.81.11 Tx : 360 650

LES COMPOSANTS ACTIFS

de visu

circuits intégrés numériques

Réseaux logiques

programmables

Ce constructeur commercialise une nouvelle famille de réseaux logiques programmables « PAL médium », assurant 99,5 % de rendement en test fonctionnel et 99,5 % en programmation

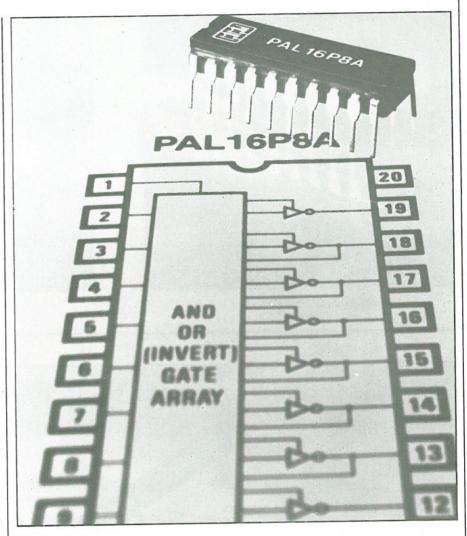
Référencés « série PAL 20AP », ces circuits bénéficient des dispositifs suivants : la polarité de sortie programmable, le préchargement des registres, le « preset » à la mise sous tension et une « testabilité » fonctionnelle complète avant programmation.

Ces PAL médium 20 broches (boîtier étroit) sont caractérisés par une grande souplesse d'utilisation, une « testabilité » accrue, et un temps de programmation de 25 ns.

Tous les produits de cette famille, référencés « PAL 16P8A », « PAL 16RP4A », « PAL 16RP6A » et « PAL 16RP8A », sont disponibles en boîtier 20 broches, plastique ou céramique, et en LCC (« Leadless Chip Carrier »).

Fabricant:

Monolithic Memories


8, rue de l'Estérel SILIC 463

94613 Rungis Cedex Tél.: (1) 687.45.00 Tx: 202.146

Réseaux prédiffusés

en H-CMOS

Voici une nouvelle gamme en H-CMOS 3 microns de 360 à 1500 portes à trois entrées. Ces réseaux sont caractérisés en gamme civile et militaire.

Alliant rapidité (2 ns par inverseur) et grande densité d'intégration (6 transistors par porte) par rapport à la taille réduite du silicium, ces réseaux sont particulièrement aptes, par leur prix de revient modéré (une seule couche de métallisation), à répondre au marché de grande série.

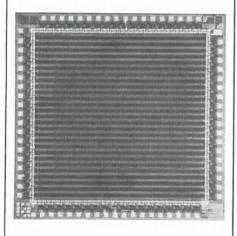
Leur « personnalisation » bénéficie d'un système informatique d'implantation automatique, raccourcissant le cycle de développement, le temps de fabrication étant déjà particulièrement réduit.

En bipolaire, le catalogue du constructeur comporte des réseaux logiques rapides en ECL/TTL 500 et 1 000 portes, double couche de métallisation, 1 ns et 2,3 mW par porte utilisée. Ces réseaux ne nécessitent

qu'une seule tension d'alimentation si l'interface a lieu en un mode unique TTL ou ECL. Ils sont caractérisés en gammes civile et militaire. Un système CAO d'implantation automatisé en interactif facilite les personnalisations.

Par ailleurs, en bipolaire toujours, le catalogue de réseaux analogiques, dits « polyuse », s'agrandit de deux nouvelles matrices :

– « polyuse B », de 800 composants dont les transistors NPN ont une fréquence de transition de 550 MHz. Les applications civile et militaire se situent dans la gamme 0 à 50 MHz. Le nombre de plots est de 40, contre 24 pour le « polyuse A » de 400 composants aux performances similaires.


 « polyuse C », de 400 composants avec transistors NPN dont la fré-

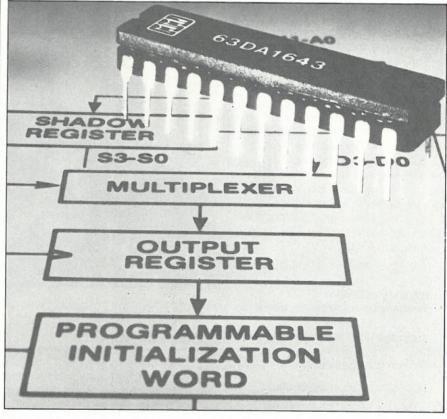
COMPOSANTS ACTIFS

quence de transition est de 2,2 GHz. Ce réseau répond aux applications civile et militaire jusqu'à 200 MHz.

Pour le développement de ses réseaux, le constructeur fournit, pour les réseaux analogiques, « kit-parts » pour maquette, paramètres de simulation, grille d'implantation, et, pour l'ensemble des réseaux de toutes natures et les circuits à la demande, l'accès à ses moyens de conception, matériels et logiciels, dans ses centres spécialisés.

Fabricant : Thomson-Semiconducteurs

45, avenue de l'Europe 78140 Vélizy


Tél.: (3) 946.97.19 Tx.: 204 780

« Diagnostic on Chip » 16 K

Les « DOC » ou « Diagnostic on Chip » représentent un nouveau concept dans le domaine des PROM.

Ils facilitent le contrôle d'un système en fonctionnement, et diminuent donc les coûts du test en production, de la maintenance, et à terme, augmentent la fiabilité.

Les routines de diagnostic peuvent être exécutées à la mise sous tension et/ou en tâches non prioritaires pendant le fonctionnement.

Des signaux de contrôle permettent de commander indépendamment le registre de sortie ou le registre image.

Ces nouvelles PROM à diagnostic, référencées « 53/ 63DA1641 » et « 53/ 63DA1643 », sont cascadables, ce qui les rend idéales pour les mots de contrôle longs utilisés en microprogrammation. Cela élimine l'emploi d'un grand nombre de lignes de contrôle et de données, ainsi que l'utilisation de circuits additionnels nécessaires à l'implantaion de la fonction de diagnostic.

La 53/ 63DA1641 dispose d'un contrôle asynchrone des sorties trois états, tandis que la 53/ 63DA1643 a des sorties « totem-pole » et permet une initialisation asynchrone programmable, qui peut être utilisée pour engendrer des micro-instructions de reconfiguration ou d'interruption.

Ces deux circuits, qui fournissent 24 mA en sortie, ont un temps de préaffichage de 40 ns maximum, et un temps de propagation de l'horloge vers la sortie de 20 ns maximum.

Alimentées en 5 V, les DOC 16 K consomment au maximum 190 mA. La puissance dissipée typique est de 675 mW.

La technologie titane-tungstène associée à des émetteurs suiveurs PNP permet d'obtenir des produits fiables et rapides, avec des taux de bonne programmation supérieurs à 98 %.

Organisés en 4 096 mots de 4 bits, ces nouveaux circuits sont disponibles en boîtier 24 broches DIL Skinnydip, ce qui diminue leur encombrement.

Ils existent en gamme de température commerciale et militaire.

Fabricant:

Monolithic Memories

8, rue de l'Estérel SILIC 463

94613 Rungis Cedex

Tél.: (1) 687.45.00 Tx.: 202 146

COMPOSANTS ACTIFS

« Chip-carrier » plastique

Ce fabricant propose maintenant à ses clients de nombreux circuits MOS de son catalogue, encapsulés dans une nouvelle forme de boîtier plastique miniature : le « SURPICOP ».

La demande croissante du marché pour des boîtiers à montage de surface sur circuits imprimés, dans des applications de grande série, a conduit à concevoir ce nouveau boîtier dont les techniques de fabrication sont très semblables à celles utilisées pour les boîtiers DIL classiques.

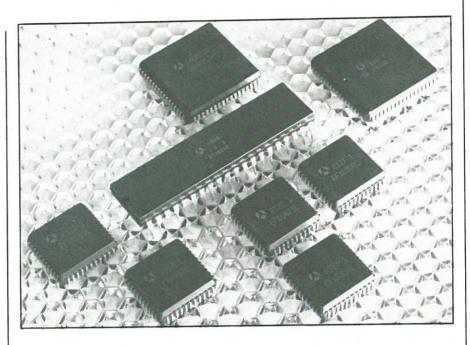
Les caractéristiques de fabrication qui en découlent sont les mêmes que pour les boîtiers DIL :

- test dynamique et statique à 100 %.
- test en température,
- déverminage et test de durée de vie,
- marquage identique (référence et code).
- fonction automatisée.

Dans beaucoup d'applications, les boîtiers « SURPICOP » permettent des gains importants par rapport aux DIL classiques :

- encombrement réduit de 30 à 50 %.
- montage de surface : pas de trous,
- montage automatique possible,
- utilisation de circuits imprimés classiques,
- standard JEDEC.

Dans beaucoup d'applications, les boîtiers « SURPICOP » peuvent remplacer les « puces », apportant de plus des composants testés en température et en dynamique (ce qui n'est pas le cas des puces).


Les fonctions proposées actuellement comprennent, entre autres, les microprocesseurs 8 et 16 bits, les microcalculateurs, les périphériques classiques, ainsi que les contrôleurs graphiques et semi-graphiques.

Fabricant:

Thomson-Semiconducteurs 45, avenue de l'Europe

78140 Vélizy

Tél.: (3) 946.97.19 Tx.: 204 780

Mémoires PROM

Ces mémoires offrent, grâce à l'emploi d'un procédé avancé (« émetteur lavé » ...), des performances de plus de 50 % supérieures aux mémoires directement équivalentes.

Les domaines d'application de ces PROM sont :

- remplacement de logiques aléatoires
- algorithmes câblés,
- contrôleurs séquentiels,
- conversion de code.

- 82S131A

Cette mémoire a une configuration de 512 mots de 4 bits.

Avec un temps d'accès maximum version civile de 30 ns et un Tce (« chip enable ») de 20 ns, la 82S131A offre des performances de plus de 50 % supérieures par rapport à la 82S131.

Le circuit spécifié en gamme militaire offre les caractéristiques maximales suivantes: Taa (temps d'accès): 35 ns, Tcd (« chip disable »): 15 ns.

82S126A/82S129A

Ces deux PROM ont une configuration de 256 mots de 4 bits, et possèdent 2 « chip enable » en entrée, un actif haut, l'autre actif bas. La 82S126A a une sortie en collecteur ouvert, la 82S129A une sortie trois états.

Les performances offertes en gamme de température civile sont, pour la 82S129A, 25 ns maximum en temps d'accès et 20 ns en Tce, et pour la 82S126A, 27 ns maximum en Taa pour un Tce de 20 ns.

En version militaire, les temps d'accès maximum sont de 35 ns pour un Tce de 20 ns.

82S23A/ 82S123A

Ces deux mémoires ont une organisation de 32 mots de 8 bits, entrée « chip enable » active bas. Leur temps d'accès maximum en version civile est de 25 ns pour un Tce maximum de 20 ns.

En version militaire, elles offrent les caractéristiques suivantes : 35 ns maximum en temps d'accès pour 20 ns maximum en Tce.

Fabricant : RTC

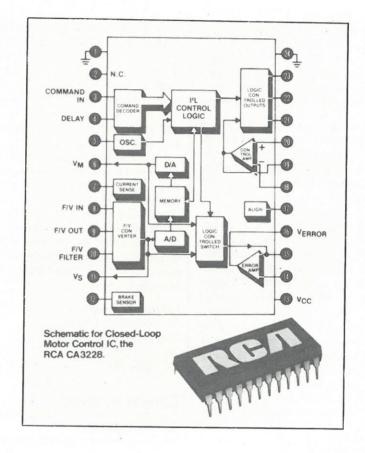
130, avenue Ledru-Rollin 75540 Paris Cedex 11 Tél. : (1) 355.44.99

Tx.: 680 495

COMPOSANTS ACTIFS

circuits intégrés analogiques

Circuit de contrôle


de moteurs

Ce circuit intégré 24 broches peut contrôler des moteurs continus ou alternatifs, comme des commandes de convoyeurs, de bobineuses ou le transport de bandes magnétiques.

Le CA3228 est fabriqué en technologie bipolaire basse consommation l²L. Puisqu'il ne consomme que 20 mA environ sous 8 V, la puissance dissipée est faible, ce qui améliore la fiabilité des équipements.

Comme contrôle de vitesse en automobile, ce produit détecte la vitesse du véhicule et la compare à une vitesse de référence prédéterminée. Toute dérive de vitesse actionne un servomécanisme qui ouvre ou ferme la commande des gaz et compense l'erreur de vitesse. Dans une automobile. le CA3228 est le seul contrôleur électronique nécessaire à la fonction. La vitesse du véhicule et l'action sur l'accélérateur parviennent au circuit par l'intermédiaire de senseurs. Des actionneurs sont nécessaires en sortie pour convertir le signal électrique en action mécanique et agir sur la vi-

Pour simplifier son intégration dans un système, toutes les commandes entrent dans le CA3228 sur une simple ligne. Les commandes sont codées sur la ligne par la sélection d'une résistance appropriée commutée vers la masse. Cet arrangement en diviseur de tension établit un niveau de tension qui est comparé à une référence. En fonction de la tension obtenue, le système interprète la commande comme un ordre d'accélération, de ralentissement ou de retour

à la vitesse de croisière. Si les freins sont actionnés ou si la vitesse tombe au-dessous d'un minimum, le circuit passe en mode d'attente.

Le CA3228 est encapsulé en boîtier plastique 24 broches dual-in-line et fonctionne dans une plage de température de – 40 à + 85°C.

Fabricant: RCA 2-4, avenue de l'Europe 78140 Vélizy Tél: (3) 946.56.56

Amplificateur

Tx: 697 060

d'instrumentation

Il s'agit d'un amplificateur d'instrumentation multi-étages de grande précision, destiné aux conditionnements de signaux nécessitant des performances exceptionnelles. La technologie monolithique permet d'obtenir des performances élevées en même temps que peu onéreuses.

Trois amplificateurs opérationnels avec leurs circuits de résistances couches minces constituent l'amplificateur de base, un quatrième ampli opérationnel, spécifié séparément, peut être utilisé par l'opérateur pour d'autres fonctions importantes telles que :

- filtrage passe bas,
- garde active de la tension en mode commun,
- règlage de gain.

Ce quatrième ampli opérationnel présent dans le boîtier DIP peut être particulièrement utile quand l'espace sur la carte est tout particulièrement recherché.

Les excellentes spécifications de fonctionnement de l'« INA 104 » à haute précision comprennent :

COMPOSANTS ACTIFS

- ultra basse dérive de tension offset: $0.2 \mu V/^{\circ}C$ max,
- basse tension d'offset : 25 μV max,
- faible non-linéarité: 0,002 % max,
- CMR élevée : 106 dB min à 60 Hz,
- haute impédance d'entrée : $10^{10} \Omega$.

Une résistance unique règle de 1 à 1000 le gain de la portion de l'amplificateur d'instrumentation.

Le boîtier DIP plastique 18 broches est spécifié de 0 à 70 °C, et le boîtier DIP métallique de -25 °C à +85 °C et de -55 °C à +125 °C.

Par cet amalgame unique de caractéristiques, l'« INA 104 » est idéal pour les applications de grande précision. Très performant, il est destiné aux applications qui nécessitent l'amplification de signaux de bas niveau relevant de la gamme des millivolts. Par exemple: signaux de ponts, jauges de contraintes, capteurs de pression, thermocouples et autres transducteurs utilisés dans le contrôle de processus, l'acquisition des données en usines, les applications ATE, et l'instrumentation de test analytique et médicale

Fabricant: Burr-Brown 18, avenue Dutartre 78150 Le Chesnay Tél.: (1) 954.35.58 Tx.: 696 372

Régulateurs de tension

à faibles pertes

Semblables aux régulateurs 5V LM2930 et LM2931, les LM2930A et LM2931A en sont les versions avancées caractérisées par des chutes de tension plus faibles en entrées/ sorties et de meilleures possibilités en courant. Les deux circuits peuvent fournir jusqu'à 400 mA et la chute de tension est, par exemple, de 0,2 V à 150 mA et seulement 0,4 V à 400 mA.

Le LM2930A comporte une protection contre les coupures dues aux charges jusqu'à 40 V, une protection contre les signaux transitoires négatifs

jusqu'à – 40 V, une protection contre l'inversion de polarité, une protection contre les surtensions, un limiteur de courant inverse et une dispositif de coupure thermique. En plus de la protection contre les coupures dues aux charges, assurée jusqu'à 60 V, le LM2931A comporte les mêmes possibilités de protection.

Ces régulateurs conviennent particulièrement aux applications autonomes à cause de leur protection contre un environnement hostile et de leur faible chute de tension. Les LM2930A et LM2931A peuvent alimenter les circuits électroniques en tension de 5 V même au cours de démarrages à froid quand la tension de la batterie tombe en-dessous de 6 V

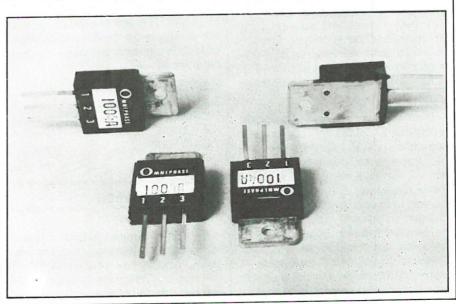
Fabricant: SGS 17, avenue de Choisy 75643 Paris Cedex 13 Tél.: (1) 584.27.30 Tx.: 250 938

Circuits hybrides

de puissance

Ces circuits hybrides à trois sorties, les Omnephase 1002 et 1004, comportent tous les composants actifs et passifs nécessaires pour avoir un système complet à contrôle de phase. Ils ont une excellente dissipation thermique, du fait de l'existence d'un radiateur intégré et leur isolement électrique est garanti par une construction hybride utilisant un triac protégé par « glassivation » et un moulage par transfert.

Le « 1002 » a un VRMS de 120 V et le « 1004 » un VRMS de 240 V. Tous deux permettent de commander 10 A.


Ces circuits existent en deux versions mécaniques d'encombrement identique, mais permettant soit un montage avec vis sur radiateur plus important, soit un montage directement sur potentiomètre.

Les circuits Omnephase commandent la puissance fournie à la charge par l'intermédiaire de l'angle de la phase du potentiel alternatif. Deux condensateurs en parallèle permettent de réduire l'hystérésis à un maximum de 15 %.

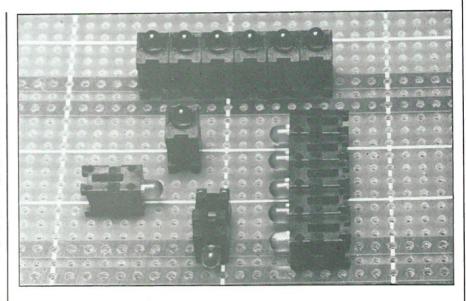
Fabricant: Omnetics

Distribué par : I.S.C. France 28, rue de la Procession 92150 Suresnes Tél. : 506.42.75

L'OPTO-ÉLECTRONIQUE

de visu

Voyants LED à angle droit


Proposée en quatre couleurs (rouge, vert, jaune, orange) et en version horizontale et verticale, cette nouvelle gamme de voyants LED est présentée en boîtier noir à fort contraste; la construction du support avec épaulement permet d'obtenir une implantation en ligne compacte au pas de 5,08 mm, sans perte de

Equipés de LED 3 mm, en version standard ou haute luminosité, ces indicateurs couvrent une grande variété d'applications dans les domaines sianalisation et informatique:

- indicateur de défaut,
- indicateur d'état logique sur bord de carte.
- panneaux et tableaux synoptiques.

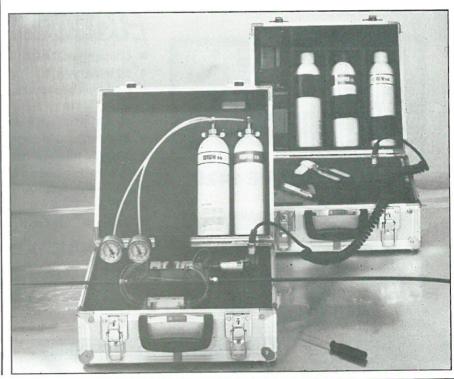
Fabricant: Sloan Distribué par : Capey 23-25, rue Singer 75016 Paris. Tél.: 525.95.59

Tx: 612 362

dage. L'outillage nécessaire à la préparation et la finition des jonctions est réuni dans une valise annexe contenant également une batterie et son chargeur. L'autonomie et les performances de cet équipement en permettent l'utilisation aussi bien sur chantier qu'en laboratoire.

Fabricant: Cortaillod

Distribué par :


Equipements Scientifiques BP 26, 92380 Garches

Tél.: (1) 741.90.90 Tx: 204 004

Instrument de soudage pour fibres optiques

Dans la soudeuse à flamme Cabloptic, le champ de chaleur créé par une flamme provoque la fusion uniquement superficielle des extrémités des fibres: dans ces conditions, l'épaisseur du film de quartz entre les cœurs est minimale; en outre, les effets de tension de surface provoquent l'autocentrage des fibres pendant le chauffage. Ce procédé permet donc de réaliser des jonctions à très faibles pertes tout en simplifiant la procédure d'alignement initial des fibres. La machine est présentée dans une valise de travail où sont disposés un poste de soudage par microchalumeau muni d'un écran de visualisation et un poste de regainage. Un dispositif de commande électronique du microchalumeau assure l'automatisme de l'ensemble du processus de sou-

OPTO-ÉLECTRONIQUE

Diodes LED

Disponibles en rouge, en vert et en jaune, ces diodes sont moulées soit en diffusantes (« D »), en transparentes (« T »), en blanches (« W ») ou en dépolies (« C »).

Leurs caractéristiques principales sont:

- rouge: 630 nm; luminosité sous 10 mA: 7 m cd pour les SR 613D et W, 20 m cd pour les SR 613C;

- vert: 555 nm; luminosité sous 10 mA: 5 m cd pour les SG 813D, 9 m cd pour les SG 813T;

- jaune: 570 nm; luminosité sous 10 mA: 30 m cd pour les SY 913D. 80 m cd pour les SY 913T.

Fabricant:

NEC Electronics Tour Chenonceaux 204, rond-point du Pont-de-Sèvres 92516 Boulogne-Billancourt

Tél.: (1) 609.90.04. Tx: 203 544

Laser 10 mW

La tête laser, modèle 106, est un cylindre de 44,2 mm de diamètre et de 48,3 cm de long. La tolérance sur le diamètre est de + ou - 0,025 mm, ce qui assure une très bonne précision d'alignement de faisceau. Sa stabilité de pointage, meilleure que 20 microradians, est excellente.

Ce laser, spécialement conçu pour fonctionner dans un environnement difficile, peut supporter des chocs allant jusqu'à 100 g, pendant 11 millisecondes.

Le faisceau a un diamètre de 0,68 mm avec une divergence de 1,2 milliradians.

Le bruit est de 0,5 % efficace. La stabilité de la puissance, à long terme, est meilleure que 3 %.

Les applications de ce laser sont : imprimantes à laser, lecture optique, médical et paramédical, anémométrie, alignement, etc.

Fabricant: Spectra-Physics ZA de Courtabœuf **BP 28** 91941 Les Ulis Cedex Tél.: (6) 907.99.56

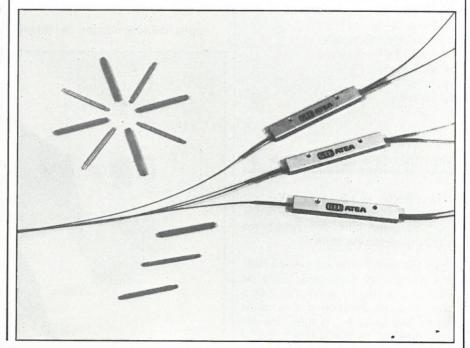
Coupleurs

Tx: 691 183

pour fibres optiques

Ce constructeur annonce deux familles de coupleurs pour fibes optiques silice-plastique ou tout verre de 200 microns.

Les «LANsplice» sont des manchons de raccordement fibre-à-fibre constitués de tiges métalliques accolées parallèlement les unes aux autres et noyées dans un polymère. Pour les connexions provisoires, les « LANsplice » sont livrés remplis d'une colle ayant l'indice de réfraction des fibres | Tx: 211 541


à connecter. Les « LANsplice » prévus pour les connexions définitives sont livrés remplis d'une colle époxy ou silicone. La gamme « LANsplice » permet de connecter jusqu'à six paires de fibres avec une perte d'insertion maximum de 1 dB (0,5 dB typique). Ses dimensions hors tout sont de 38 \times 3 \times 2 mm.

Les « LANtap » sont des coupleurs matriciels 1 x 2 ou 2 x 2 destinés à la conception des réseaux locaux à base de fibres optiques, quelle que soit l'architecture (boucle, bus, arbre). Les pertes d'insertion sont inférieures à 1 dB (0,5 dB typique) et la directivité supérieure à 40 dB. Ces coupleurs ont pour dimensions 80 × 12 × 8 mm.

Les « LANsplice » comme les « LANtap » supportent des chocs de 500 g (demi-onde sinus 1 ms) et des vibrations de 50 g, entre 10 Hz et 1 kHz. Ils peuvent travailler entre - 10 et + 100 °C, et à une humidité relative de 95 %.

Fabricant: GTE-ATEA Distribué par : Techmation 20, quai de la Marne 75019 Paris.

Tél.: (1) 200.11.05

LA MICRO-INFORMATIQUE

de visu

terminaux

Imprimantes matricielles

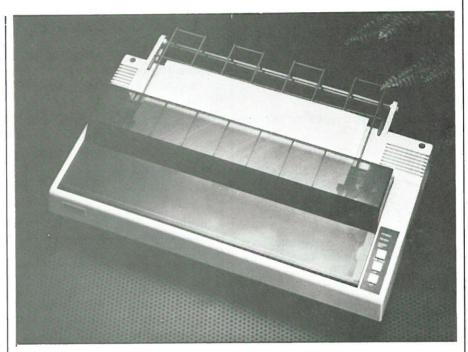
Ce fabricant complète la gamme de ses imprimantes matricielles. Trois modèles dits «économiques» existent, les RX-80, RX-80 F/T avec 80 colonnes et la RX-100 en 132 colon-

La RX-100 avec 100 cps, bidirectionnelle optimisée en alphanumérique, peut être considérée comme la version bas de gamme de la FX-100, commercialisée depuis octobre 1983. Elle possède six modes graphiques, une structure matricielle de définition 9° x 9, qui permet une grande qualité d'impression, avec 128 types de caractères différents, dont l'élite, l'italique, le pica, en plus des caractères traditionnels des imprimantes de la marque. Tous les jeux de caractères européens sont disponibles dont, bien sûr, le français accentué.

Fabricant: Epson

Distribué par : **Technology Resources** 114, rue Marius-Aufan 92300 Levallois-Perret

Tx: 610 657

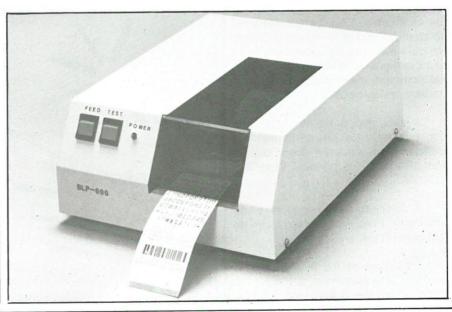


Imprimante « code barre »

Compacte, la « Barprint 600 » est une imprimante graphique par point thermique, qui offre des possibilités d'utilisation très étendues.

Le procédé thermique permet l'édition d'étiquettes de code à barres de parfaite qualité. La « Barprint 600 » peut, en outre, imprimer des lignes de texte indépendantes, la taille des caractères étant programmable.

L'imprimante « Barprint 600 » est multicodes et permet d'éditer tous les codes à barres courants (EAN, code 39. Codabar, 2/5, 2/5 entrelacé, etc.), la sélection se fait par interrup-


Enfin, la « Barprint 600 » offre un atout important : son prix très raisonnable pour de telles performances.

Autres caractéristiques de l'impri-

mante « Barprint 600 » : par son faible encombrement (35 x 25 x 12 cm), la « Barprint 600 » trouvera sa place aussi bien sur rayon, dans tous les secteurs de la distribution, qu'en milieu industriel.

La « Barprint 600 » ne comporte pas de clavier, elle peut être pilotée de façons différentes :

- par ordinateur: l'imprimante est

MICRO-INFORMATIQUE

connectable par interface RS 232C (V24 asynchrone) en série ou en parallêle;

 par balance électronique : il s'agit alors d'établir le système poids/prix en matière de produits frais en distribution alimentaire.

La vitesse de transmission est de 300, 1 200, 2 400, 9 600 bauds.

Cette imprimante édite 1 500 étiquettes à l'heure.

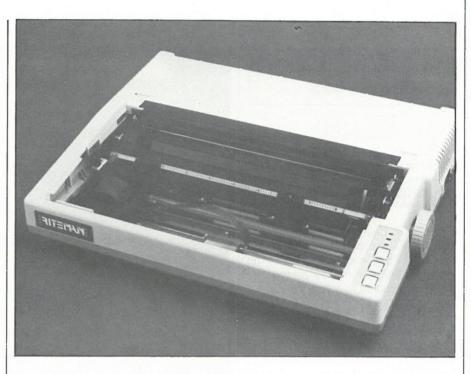
Fabricant:

Barcode industrie Bureaux de la Jonchère

64, rue Ivan-Tourgueniev 78380 Bougival Tél.: (3) 969.04.52

Tx: 697 543

Voici des imprimantes professionnelles, pour lesquelles les concepteurs industriels ont su allier compacité, esthétique et utilisation intensive. Cette gamme d'imprimantes alphanumériques et graphiques s'adresse aux ordinateurs personnels, y compris Apple et IBM.


Les premières imprimantes de la gamme sont :

- le modèle 120 (120 cps 80 colonnes),
- le modèle 160 (160 cps 132 colonnes),

qui impriment à la vitesse de 120 et 160 cps en multi-modes, bidirectionnelles optimisées.

La tête à aiguilles a une durée de vie de 100 millions de caractères.

L'entraînement du papier se fait par tracteur, picots ou friction. Les configurations d'interfaçage et de transmission se font par accès direct à l'arrière. On dispose de 96 caractères ASCII avec descendeurs, de 96 caractères italiques et de 32 caractères graphiques. Densité graphique: 480/960 points par ligne, et 576 points en mode 1/1.

On note également : auto-test, multicopies, polices multiples, caractères condensés et élargis, saut de page, etc.

La qualité supérieure d'écriture et du graphisme se prête à toutes les utilisations : courrier, dessin, mémo, listing, etc.

Fabricant:

Distribué par :
Azur Technology
Résidence du Soleil, Pont de l'Arc
Route des Milles
13100 Aix-en-Provence
Tél. : (42) 26.32.33

Tx: 420 316

Terminal semi-graphique

Désormais les PDP 11 et VAX peuvent dialoguer facilement et en couleurs, grâce au « Tesselator ».

« Tesselator » est un terminal semigraphique, d'installation et d'utilisation très simples. L'interfaçage avec les ordinateurs se fait avec le nouveau progiciel DMS créé par le groupe Asea.

Le DMS permet l'utilisation de terminaux ordinaires monochromes. Il permet aussi de soulager l'unité centrale en utilisant la puissance de traitement local du « Tesselator » et ses fonctions d'édition.

La hiérarchisation d'emploi du DMS permet l'intervention à trois niveaux :

- mise en place locale des affichages statiques (sur le « Tesselator »),
- interface (création des affichages dynamiques en Fortran ou Assembleur),
- protocole complet (création des affichages statiques et dynamiques sur le « Tesselator »).

Fabricant : ASEA

22, rue du 8-Mai-1945 95340 Persan, B.P. 5

Tél.: (3) 470.92.00 Tx: 698 827

MICRO-INFORMATIQUE

ordinateurs

Micro-ordinateurs

de gestion

Les utilisateurs exigeants trouveront dans ces ordinateurs tous les avantages des micro-ordinateurs de gestion alliés aux hautes performances des calculateurs scientifiques.

Il s'agit des modèles « 1150 », « 1160 » et « 4050 ».

Modèle « 1150 » :

Il a été spécialement conçu pour les applications quotidiennes, traitement de texte, caisse de gestion, calculs, analyses statistiques. Sa capacité (400 000 caractères disponibles par disquette) vous facilite le traitement des tâches courantes. Il est même possible de l'étendre à 8 millions de caractères grâce à son disque dur.

Modèle « 1160 »:

Les utilisateurs exigeants trouveront dans cet ordinateur tous les avantages des micro-ordinateurs de gestion alliés aux hautes performances des calculateurs scientifiques. Les lecteurs de disquette de grande capacité (800 000 caractères par disquette) permettront aisément de s'adapter aux besoins de votre entreprise, son extension disque dur (8 millions de caractères disponibles) le transformeront en un puissant ordinateur de gestion.

Modèle « 4050 »:

Le modèle « 4050 » répond aux besoins, toujours croissants, de rapidité et de puissance de calcul des gestionnaires

En effet, il est conçu autour d'un microprocesseur 16 bits (Intel 8086).

Sa haute technologie et ses composants spécialisés lui permettent de rivaliser avec les grands de l'informati-

que. Sa conception modulaire alliée à des techniques de fabrication avancées permettent un rapport qualité/prix exceptionnel.

Son langage remarquable (Basic séquentiel indexé) lui confère une puissance réservée d'habitude aux gros ordinateurs.

Fabricant:

Sanyo

8, avenue Léon-Harmel 92160 Antony Tél. : (1) 666.21.62

Tx: 201 139

Micro-ordinateur 8 bits

Le « Système 19 » est un micro-ordinateur 8 bits multiprocesseurs, capable de supporter jusqu'à seize postes de travail. Le système d'exploitation proposé est le Turbodos (version 1.3), adapté aussi bien aux environnements mono que multi-utilisateurs, et qui supporte les langages les plus courants (Assembleur 80, Basic, Pascal, Fortran IV, Cobol, APL, PL/1, C...). De plus, il donne accès à l'importante bibliothèque de programmes développés sous CP/M 2.2, assure la gestion de la machine lorsque celle-ci est intégrée dans un environnement réseau (local, national, ou commuté des PTT), et assure la gestion de la base de données (commune à tous les utilisateurs).

Le système est conçu autour de cartes au standard multibus (normalisé IEEE 796), et il peut donc recevoir toute carte conforme à ce standard de bus: il en existe une bonne centaine de types différents: des cartes unités centrales et d'extensions mémoire, des cartes de gestion d'écrans graphiques, d'interfaces périphéri-

MICRO-INFORMATIQUE

ques, d'acquisition de données analogiques, de reconnaissance de formes, de synthèse de la parole, etc.

La carte processeur-maître est conçue autour d'un microprocesseur 8 bits Z 80 A, et dispose de 4 interfaces RS 232 C, ainsi qu'un interface parallèle Centronics. La mémoire RAM associée offre une capacité de 64 à 256 Ko. Pour les applications multi-utilisateurs, des cartes processeurs esclaves doivent être ajoutées : celles-ci sont également gérées par un Z 80, disposent de 64 Ko de RAM et supportent chacune un utilisateur supplémentaire.

La mémoire de masse est assurée par des disques souples ou Winchester, une cassette et un « streamer ». Le système peut être équipé de lecteurs de disques souples (8 pouces) simple face simple densité (standard IBM 3740), ou double face double densité d'une capacité de 1,6 Mo non formattée. Le disque Winchester est au standard SMD ou ANSI (suivant les options), et il offre une capacité de 10 à 336 Mo non formattés. La cassette 1/4 pouce présente, quant à elle, une capacité de 17 Mo non formattés.

Fabricant:

Plessey Microsystems 7-9, rue Denis-Papin 78190 Trappes Tél.: (3) 051.49.52

Tx: 696 441

« Supermicro »

multi-utilisateurs

Supportant jusqu'à 128 utilisateurs et gérant de 10 Mo à 10 Go sur disque, le « Supermax » se caractérise sur le plan « matériel » par trois points :

- Puissance: une à huit unités de traitement fonctionnant en parallèle et développées autour du microprocesseur MC 68000 offrant des performances de 0,6 à 4,8 Mips; une capacité mémoire centrale ECC (à correction automatique d'erreurs) de

0,5 à 128 Mo avec gestion dynamique de la mémoire par unité câblée; deux à huit contrôleurs intelligents d'entrées/sorties (disques avec DMA, périphériques type V24, imprimantes...) basés sur un 8085 de 64 Ko RAM et 8 Ko PROM; un bus interne à mots de 32 bits.

- Modularité: les trois versions de base de la gamme « Supermax » : modèle de table (pouvant être, par exemple, utilisé pour des applications de traitement de texte, de développement de logiciels...), modèle vertical (compact et étroit, il convient bien aux environnements bureautique, bancaires...), modèle rack 19" (applications industrielles, scientifiques, télécoms, EAO...), sont composés de modules standard facilitant l'exploitation et la maintenance et, d'autre part, permettent une totale migration des applica-

tions de la configuration la plus simple à la plus évoluée.

 Fiabilité: la connectique et les composants de base sont sous spécification militaire; chaque CPU est doté d'une sortie de service indépendante dédiée aux programmes de diagnostic ainsi que de circuits de contrôle des modules de mémoire RAM associés.

Sur le plan « logiciel », on note le système d'exploitation totalement compatible avec Unix III et enrichi de nombreuses fonctions améliorées.

Fabricant:

Thorn-EMI

38, rue de la République

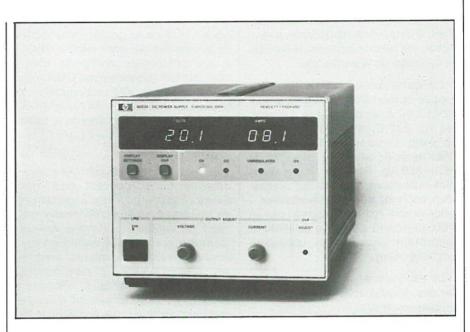
93100 Montreuil. Tél.: 859.00.42 Tx: 212 786

LES ÉQUIPEMENTS

de visu

conversion d'énergie

Alimentation continue


La régulation automatique de cette alimentation « HP 6023 A » lui confère une souplesse qui lui permet de remplacer à elle seule plusieurs alimentations traditionnelles. Elle possède de nombreuses fonctions, simples d'emploi, en face avant. Elle délivre une puissance de 200 W en sortie sur une large plage continue de tensions et de courants, de 6,7 V à 30 A à 20 V à 10 A.

Des potentiomètres à dix positions permettent de régler avec précision la tension et le courant de sortie; un affichage numérique à trois chiffres et demi, double gamme de mesure, indique le courant et la tension de sortie en face avant.

Une pression sur une touche de commande affiche sur ces mêmes afficheurs numériques les réglages de tension et de courant des potentiomètres. Ceci permet d'établir une limite de courant et une limite de tension sans agir sur la sortie de l'alimentation, en réduisant ainsi le temps d'établissement et en augmentant la précision des réglages de l'appareil.

De nombreuses fonctions de protection, incluses dans le HP 6023 A, garantissent la fiabilité de son fonctionnement. Le seuil de protection (OVP) est réglable en face avant et peut être observé sur l'affichage du voltmètre par simple pression sur une touche de commande.

Ceci autorise un réglage précis du seuil de protection sans activer les circuits OVP, ce qui permet de le modifier facilement. Toute variation de tension réseau ou de température ambiante annulera automatiquement

la sortie du 6023 A, évitant l'endommagement de l'alimentation et de la charge.

La tension et le courant de sortie du HP 6023 A peuvent être contrôlés à distance, avec une tension ou une résistance externe. Ils peuvent aussi être utilisés dans des configurations « maître-esclave » série ou parallèle pour augmenter la tension ou le courant total disponible.

Fabricant:

Hewlett-Packard Parc d'activité du Bois-Briard avenue du Lac 91040 Evry Cedex

Tél.: (6) 077.83.83 Tx.: 692 315

Alimentation à

trois sorties

Il s'agit d'une alimentation stabilisée délivrant trois tensions de sortie, l'une fixe de 5 VDC, les deux autres variables de 5 à 18 VDC.

Cette alimentation stabilisée, GSC 1301, est ainsi adaptée aux applications les plus diverses, tant en milieu industriel que dans les domaines du laboratoire et de l'enseignement.

La tension de sortie fixe 5 VDC, sous une intensité maximum de 1 A, convient particulièrement aux circuits

ÉQUIPEMENTS

de famille logique TTL. Les deux autres sorties offrent des tensions réglables en continu par potentiomètres de 5 à 18 VDC, sous une intensité de 0,5 A maximum à 15 VDC.

Deux galvanomètres situés en façade affichent les valeurs de 0 à 20 VDC et de 0 à 1 A, un sélecteur permet de choisir la sortie dont les valeurs doivent être affichées.

Un circuit de limitation de courant protège l'alimentation contre les surcharges, et les sorties peuvent être combinées pour augmenter les tensions délivrées.

La régulation en fonction du secteur est inférieure à 10 mV sur la sortie à 5 VDC, inférieure à 30 mV sur les sorties variables. Sur ces mêmes sorties, la régulation en fonction de la charge est de respectivement 50 mV et 150 mV.

L'ondulation résiduelle présente une valeur inférieure à 5 mV crête sur la sortie 5 VDC et 10 mV crête sur les deux sorties variables.

Fabricant:

Global Specialties Distribué par :

Gradco

24, rue de Liège 75008 Paris

Tél.: 294.99.69 Tx: 641 081

basse tension

Cette gamme d'alimentations économiques comprend, en fait, 46 modèles, parmi lesquels des modèles simples et doubles, à galvanomètre ou à affichage numérique.

Le modèle représenté possède deux sorties séparées + et - avec borne de terre. Deux potentiomètres permettent de régler la tension et le courant.

L'affichage des volts et des ampères débités se fait sur galvanomètres séparés par commutation U/I.

La gamme du constructeur comprend également les produits suivants :

- alimentations modulaires pour circuits imprimés.
- blocs fonctionnels.
- alimentations bt-ht de laboratoire,
- enregistreur de perturbations secteur,
- alimentations de secours,
- convertisseurs,
- onduleurs.

Fabricant:

Française d'instrumentation

19, rue Pelloutier

94500 Champigny-sur-Marne

Tél.: (1) 706.30.77

Tx: 210 023

Alimentations

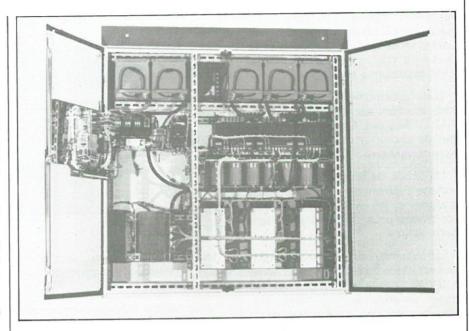
de laboratoire

Voici une nouvelle famille d'alimentations de laboratoire à triple sortie disposant d'un affichage numérique double pour chacune de ses sorties. Malgré ses hautes performances techniques et son confort d'utilisation, cette nouvelle gamme est commercialisée à un prix très compétitif.

La série CN7B T se compose de 5 modèles, chaque modèle peut délivrer 2 × 0 - 24 à 50 V et 0 - 8 V avec en

ÉQUIPEMENTS

plus la possibilité de recevoir (en option) un module qui délivre une tension de sortie fixe au choix de l'utilisateur. Les courants de sortie varient de 1 à 3 A pour les deux premières sources et de 3 à 20 A pour la troisième source.


Cette nouvelle gamme d'alimentation se caractérise par de nombreuses nouveautés, jusqu'alors peu rencontrées sur des alimentations de laboratoire.

- 6 afficheurs numériques, précision
 1 digit ;
- sélection par poussoir du courant limite souhaité sans court-circuit de la sortie, ceci afin d'éviter d'endommager les bornes de sortie;
- protection totale de toutes les sorties;
- indication des modes de fonctionnement V_s et I_s constant; en mode I_s constant, une LED clignote; ceci pour chaque source;
- réglages gros et fin de la tension de sortie sur les trois sources.

Fabricant:
CNB Electronique
Route Nationale 307, B.P. 6
78810 Feucherolles
Tél.: (3) 056.54.45

Onduleurs portables

Ce constructeur propose une gamme très complète d'onduleurs portables. Proposés pour des puissances de 50 VA à 1 000 VA, ils ont été particulièrement développés pour des applications nécessitant une source d'énergie alternative peu encombrante de haut rendement. Prévus pour des tensions d'entrées de 11 à 15 VDC ou 22 à 30 VDC, ils délivrent une tension sinusoïdale régulée à ± 5 % pour une distorsion inférieure à 10 %. La stabilité en fréquence, meilleure que ± 1 Hz, peut être portée à 0,001 % par l'utilisation d'un pilote à quartz. Des versions fai-

bles distorsions et entrées pour réseau continu 48 VDC et 100 VDC sont également proposées.

Fabricant:

Sunlit

Distribué par :

Equipements Scientifiques BP 26, 92380 Garches

Tél. : (1) 741.90.90

Tx: 204 004

Alimentations

ininterruptibles

Ces alimentations ininterruptibles présentées en boîtier métallique sont proposées en version sortie monophasée ou triphasée. Leur puissance s'étend de 750 VA à 25 kVA.

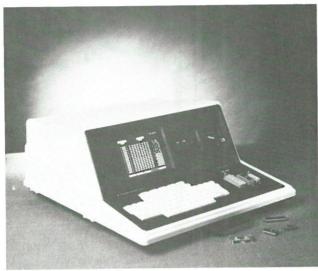
Caractérisées par une absence totale de rayonnements parasites, elles sont livrées entièrement prêtes à l'emploi, équipées de batteries au plomb étanche et sans entretien.

Un chargeur très élaboré garantit à ces batteries une grande durée de vie.

Leur autonomie de 10 minutes permet à l'utilisateur de s'affranchir de microcoupures ou de coupures provenant du réseau. En outre, leur capacité importante de surcharge instantanée permet le démarrage des moteurs ou des systèmes ayant des courants d'appel importants.

Le taux de distorsion du signal délivré est inférieur à 5 % (typ).

Une série d'alimentations ininterruptibles est également proposée en tiroir rack 19 pouces.


Fabricant: Equipements Scientifiques BP 26, 92380 Garches Tél.: (1) 741.90.90

Tx: 204 004

PALS, IFLS, PROMS, REPROMS, MONOCHIPS

LA RENAISSANCE

Olegenie d'inc

MICROPROSS 56, rue de Lens - Lille Tél.: (20) 54.54.45 - Télex: 120611 F Imaginez un outil de programmation pour proms bipolaires, reproms, PAL et IFL; Ajoutez un lecteur de cassettes, un effaceur UV, un clavier ASCII avec touches fonctions, un écran; Implantez vingt formats de transmission, un éditeur de textes, un assembleur/désassembleur d'équations logiques;

vous obtenez un outil évolué.

Adaptez une syntaxe assistée et des options sur cassette pour les futurs circuits programmables; enfin :

Autorisez l'utilisateur à écrire ses propres options ;

vous obtenez un système de programmation.

LE ROM 5000 Système de Programmation Français

SERVICE-LECTEURS Nº 63

BOMOCY S.A. - 77552 MOISSY-CRAMAYEL Cedex Tél: (6) 060.01.25 (lignes groupées) Télex: 692.996 F

REPERTOIRE DES ANNONCEURS

ALLEN-BRADLEY		94
ARNOULD ELECTRO-INDUSTRIE		18
BAFA		
BFI		82
BLANC-MECA		131
BOMOCY		
BRADY		144
CARLO GAVAZZI		
CDA		93
DATA-RD	-	42
DEXTER-HYSOL	/-	111
DIGITAL EQUIPMENT		
ELECTRO CONCERT		68
ELECTRO-CONCEPT		22
ELEKTRONIK-RFT		4
ENERTEC SCHLUMBERGER		131
ETSF	4-	145
FERRAZ		22
FRANCLAIR ELECTRONIQUE		101
FRANELEC		125
G31		80
IPIG		79
ISKRA		80
INTERNATIONAL RECTIFIER		29
ITT-SEMICONDUCTEURS		97
JBC	1	
KEITHLEY		98
KONTRON ELECTRONIQUE	60.	98
LOCAMESURE	10	22
LEXTRONIC	13-	02
MAIR		12
METRIX		12
MICROPROSS		29
MICRO ET ROBOTS 3°	I	42
MJB	co	uv.
NEC 109	1 -1	13
NEC	8	3-9
ORBITEC	1	25
PHILIPS	13-	
PHILIPS DETI	1	17
RTC		3
SCHROFF		17
SCOP		81
SECME		20
SIBCO	1	41
SIEMENS		24
SILICONIX 4°	cou	JV.
SOAMET		92
SONEREL		41
SOREP 2°	cou	IV.
SPRAGUE		18
SYSTEM CONTACT	1:	37
TAG SEMICONDUCTORS	10	00
TEKTRONIX		25
TERALEC		42
TRADELEC		01
TRIPETTE ET RENAUD	1	13
ZMC	14	20
		13

