
4. Introduction au langage Ruby par
des exemples

4.1 Introduction : Pourquoi Ruby?

Ruby, comme Perl et Python, est un langage de
«script» à typage dynamique :

Ruby. . . est un langage open-source dyna-
mique qui met l’accent sur la simplicité et la
productivité. Sa syntaxe élégante en facilite
la lecture et l’écriture.

https: // www. ruby-lang. org/ fr/

Conçu, milieu 90, par Yukihiro Matsumoto:

Ruby is “made for developer happiness”!
Y. Matsumoto

https://www.ruby-lang.org/fr/

Figure 4.1: Arbre généalogique de divers langages de
programmation, incluant Ruby. Source: https://www.
madetech.com/blog/pros-and-cons-of-ruby-on-rails.

https://www.madetech.com/blog/pros-and-cons-of-ruby-on-rails
https://www.madetech.com/blog/pros-and-cons-of-ruby-on-rails

Langage Année Caractéristiques
Lisp 1958 approche fonction-

nelle
métaprogrammation

CLU 1974 itérateurs

Smalltalk 1980 langage objet pur,
blocs de code
GUI, sUnit

Eiffel 1986 Uniform Access
Principle

Perl 1987 expressions
régulières et pattern-
matching

Ruby 1993

Tableau 4.1: Les ancêtres de Ruby.

Figure 4.2: Les 10 premières positions du palmarès «The
2016 Top Programming Languages» (IEEE Spectrum).

Philosophie de Ruby

I didn’t work hard to make Ruby perfect for
everyone, because you feel differently from
me. No language can be perfect for every-
one. I tried to make Ruby perfect for me,
but maybe it’s not perfect for you. The
perfect language for Guido van Rossum is probably
Python [peut-être aussi pour vous. . . ou pas?].

Yukihiro Matsumoto
Source : http://www.artima.com/intv/ruby.html

http://www.artima.com/intv/ruby.html

Sometimes people jot down pseudo-code on
paper. If that pseudo-code runs directly on
their computers, it’s best, isn’t it? Ruby tries
to be like that, like pseudo-code that runs.
Python people say that too.

Yukihiro Matsumoto
Source : http://www.artima.com/intv/ruby.html

http://www.artima.com/intv/ruby.html

Un petit exemple : Somme de deux tableaux
Version Ruby/PRuby

def somme_tableaux(a, b)
c = Array.new(a.size)

PRuby.pcall(0...c.size ,
-> (i) { c[i] = a[i] + b[i] }
)

c
end

Version Java

public static int[] sommeTableaux(int a[], int b[]) {
int n = a.length;
int c[] = new int[n];

Thread threads [] = new Thread[n];
for(int i = 0; i < n; i++) {

int fi = i;
threads[i] = new Thread(

() -> c[fi] = a[fi] + b[fi]
);
threads[i]. start ();

}

for(int i = 0; i < n; i++) {
try { threads[i].join (); } catch(Exception e){};

}

return c;
}

Ruby inherited the Perl philosophy of having
more than one way to do the same thing.

Yukihiro Matsumoto
Source : http://www.artima.com/intv/rubyP.html

http://www.artima.com/intv/rubyP.html

Mises en oeuvre de Ruby

Dernière version = Ruby 2.4.0 (25 décembre 2016)
Source : https://www.ruby-lang.org/en/news/2016/12/25/ruby-2-4-0-released/

https://www.ruby-lang.org/en/news/2016/12/25/ruby-2-4-0-released/

Plusieurs mises en oeuvre de Ruby sont
disponibles
$ rvm list known
MRI Rubies
[ruby-]1.8.6[-p420]
[ruby-]1.8.7[-head] # security released on head
[ruby-]1.9.1[-p431]
[ruby-]1.9.2[-p330]
[ruby-]1.9.3[-p551]
[ruby-]2.0.0[-p643]
[ruby-]2.1.4
[ruby-]2.1[.5]
[ruby-]2.2[.1]
[ruby-]2.2-head
ruby-head

JRuby
jruby-1.6.8
jruby[-1.7.19]
jruby-head
jruby-9.0.0.0.pre1

Rubinius
rbx-1.4.3
rbx-2.4.1
rbx[-2.5.2]
rbx-head

Opal
opal

Minimalistic ruby implementation - ISO 30170:2012
mruby[-head]

Ruby Enterprise Edition
ree-1.8.6
ree[-1.8.7][-2012.02]

GoRuby
goruby

Topaz
topaz

MagLev
maglev[-head]
maglev-1.0.0

Mac OS X Snow Leopard Or Newer
macruby-0.10
macruby-0.11
macruby[-0.12]
macruby-nightly
macruby-head

IronRuby
ironruby[-1.1.3]
ironruby-head

Figure 4.3: Les mises en oeuvre de Ruby disponibles par
l’intermédiaire de rvm (février 2016) .

Plusieurs mises en oeuvre sont disponibles :

• MRI (CRuby)
• JRuby
• Rubinius
• . . .

Figure 4.4: Quelques organisations qui utilisent JRuby.
Source : «JRuby 9000 Is Out; Now What?, T. Enebo and C. Nutter, RubyConf 2015,

https://www.youtube.com/watch?v=KifjmbSHHs0

https://www.youtube.com/watch?v=KifjmbSHHs0

4.2 Compilation et exécution de pro-
grammes Ruby

Exemple Ruby 4.1 Deux versions d’un programme «Hello world!».

$ cat hello0.rb
puts ’Bonjour le monde!’

$ ruby hello0.rb
Bonjour le monde!

–––-

$ cat hello1.rb
!/ u s r / b i n / e n v r u b y

puts ’Bonjour le monde!’

$ ls -l hello1.rb
-rwxr -xr-x. 1 tremblay tremblay 46 26 jun 09:52 hello1.rb*

$./ hello1.rb
Bonjour le monde!

4.3 irb : Le shell interactif Ruby

• Première façon facile pour interagir avec Ruby
— et comprendre comment Ruby fonctionne

• Met en oeuvre un REPL
= Read-Eval-Print Loop

TANTQUE session pas terminée FAIRE
Lire une expression
Évaluer l’expression
Imprimer la valeur de l’expression

FIN

Exemple Ruby 4.2 irb, le shell interactif de Ruby.

$ irb --prompt=simple
>> 10
=> 10

>> 2 + 4
=> 6

>> puts ’Bonjour le monde!’
Bonjour le monde!
=> nil

>> r = puts ’Bonjour le monde!’
Bonjour le monde!
=> nil
>> r
=> nil

>> puts(’Bonjour le monde!’)
Bonjour le monde!
=> nil

>> STDOUT.puts(’Bonjour le monde!’)
Bonjour le monde!
=> nil

>> STDERR.puts(’Bonjour le monde!’)
Bonjour le monde!
=> nil

>> STDIN.puts(’Bonjour le monde!’)
IOError: not opened for writing

from org/jruby/RubyIO.java :1407:in ’write ‘
[...]
from /home/tremblay /.rvm/rubies/jruby -1.7.16.1/ bin/irb :13:in
’(root)’

>> # _ d e n o t e la v a l e u r de la d e r n i e r e e x p r e s s i o n e v a l u e e .

>> 8 * 100 / 2
=> 400

>> _ + _
=> 800

>> _ / 3
=> 266

>> _ / 3.0
=> 88.66666666666667

On p e u t c r e e r u n e n o u v e l l e " s e s s i o n " (i n t e r n e) q u i m o d i f i e self ,

l ’ o b j e t c o u r a n t .

>> irb [10, 20]

>> self.class
=> Array

>> self
=> [10, 20]

>> size
=> 2

>> irb "abcde"
>> self
=> "abcde"

>> ^D
=> #<IRB::Irb: @context=#<IRB:: Context :0 x0000000170a660 >,

@signal_status =:IN_EVAL , @scanner=#<RubyLex :0 x0000000191a7c0 >>

>> self
=> [10, 20]

4.4 Tableaux

Exemple Ruby 4.3 Les tableaux et leurs opérations de base.

>> # V a l e u r s l i t t e r a l e s , i n d e x a t i o n et t a i l l e .

?> a = [10, 20, 30]
=> [10, 20, 30]

>> a[0]
=> 10

>> a[2]
=> 30

>> a[2] = 55
=> 55

>> a
=> [10, 20, 55]

>> a.size
=> 3

?> # V a l e u r n i l p a r d e f a u t et e x t e n s i o n de la t a i l l e .

?> a[6]
=> nil

>> a.size
=> 3

>> a[5] = 88
=> 88

>> a.size
=> ??

>> a
=> ??

?> # V a l e u r n i l p a r d e f a u t et e x t e n s i o n de la t a i l l e .

?> a[6]
=> nil

>> a.size
=> 3

>> a[5] = 88
=> 88

>> a.size
=> 6

>> a
=> [10, 20, 55, nil, nil, 88]

?> # A c c e s au ’ d e r n i e r ’ e l e m e n t .

?> a[a.size -1]
=> 88

>> a[-1]
=> 88

Autre forme de commentaire :
=begin
Blah blah
...
=end

Exemple Ruby 4.4 Les tableaux et leurs opérations de base (suite 1).

?> # T a b l e a u x h e t e r o g e n e s .

?> a
=> [10, 20, 55, nil , nil , 88]

>> a[8] = ’abc’
=> "abc"

>> a
=> [10, 20, 55, nil , nil , 88, nil , nil , "abc"]

?> # A j o u t d ’ e l e m e n t s .

?> a = []
=> []

>> a << 12
=> [12]

>> a << ’abc’ << [2.7, 2.8]
=> [12, "abc", [2.7, 2.8]]

?> # C r e a t i o n de t a b l e a u x a v e c v a l e u r s i n i t i a l e s .

?> b = Array.new(3) { 10 }
=> [10, 10, 10]

>> d = Array.new(4)
=> [nil , nil , nil , nil]

Exemple Ruby 4.5 Les tableaux et leurs opérations de base (suite 2).

?> # T r a n c h e s de t a b l e a u x .

?> a = [10, 20, 30, 40, 50]
=> [10, 20, 30, 40, 50]

>> a[0..2]
=> [10, 20, 30]

>> a[3..3]
=> ??

>> a[1.. -1]
=> ??

>> a[7..7]
=> ??

?> # T r a n c h e s de t a b l e a u x .

?> a = [10, 20, 30, 40, 50]
=> [10, 20, 30, 40, 50]

>> a[0..2]
=> [10, 20, 30]

>> a[3..3]
=> [40]

>> a[1.. -1]
=> [20, 30, 40, 50]

>> a[7..7]
=> nil

?> # I n t e r v a l l e s i n c l u s i f s vs . e x c l u s i f s

>> a
=> [10, 20, 30, 40, 50]

>> a[1..3]
=> [20, 30, 40]

>> a[1...3]
=> [20, 30]

>> a[1..a.size -1]
=> [20, 30, 40, 50]

>> a[1...a.size]
=> [20, 30, 40, 50]

4.5 Chaînes de caractères

Exemple Ruby 4.6 Les chaînes de caractères et leurs opérations de base.

>> # S t r i n g s e m b l a b l e a A r r a y .

?> s1 = ’abc’
=> "abc"

>> s1.size
=> 3

>> s1 [0..1] # R e t o u r n e S t r i n g .

=> "ab"

>> s1[2] # R e t o u r n e S t r i n g a u s s i !

=> "c"

?> # C o n c a t e n a t i o n vs . a j o u t .

?> s1 + ’def’
=> "abcdef"

>> s1
=> "abc"

>> s1 << ’def’
=> "abcdef"

>> s1
=> "abcdef"

Exemple Ruby 4.7 Les chaînes de caractères et leurs opérations de base (suite).

>> # E g a l i t e de v a l e u r * s a n s * p a r t a g e de r e f e r e n c e .

?> a, b = ’abc’, ’abc’
=> ["abc", "abc"]

>> a == b
=> true

>> a.equal? b
=> false

>> a[0] = ’X’
=> "X"

>> a
=> "Xbc"

>> b
=> "abc"

?> # E g a l i t e de v a l e u r * a v e c * p a r t a g e de r e f e r e n c e .

?> a = b = ’abc’
=> "abc"

>> a == b
=> true

>> a.equal? b
=> true

>> a[0] = ’X’
=> "X"

>> a
=> "Xbc"

>> b
=> "Xbc"

Exemple Ruby 4.8 Interpolation d’une expression dans une chaîne.

>> # I n t e r p o l a t i o n d ’ u n e e x p r e s s i o n d a n s u n e c h a i n e .

?> x = 123
=> 123

?> "abc \"#{x}\" def"
=> "abc \"123\" def"

?> "abc ’#{10 * x + 1}’ def"
=> "abc ’1231’ def"

?> "abc #{x > 0 ? ’++’ : 0} def"
=> "abc ++ def"

?> # S t r i n g d e f i n i e a v e c ’... ’ = > p a s d ’ i n t e r p o l a t i o n .

?> ’abc "#{x}" def’
=> "abc \"\#{x}\" def"

Exemple Ruby 4.9 Opérations split et join.

S p l i t d e c o m p o s e u n e c h a i n e en sous - c h a i n e s

en f o n c t i o n du < < mo ti f > > s p e c i f i e en a r g u m e n t .

>> s = "abc\ndef\nghi\n"
=> "abc\ndef\nghi\n"

>> s.split("\n") # Un c a s t y p i q u e !

=> ["abc", "def", "ghi"]

>> s.split("def")
=> ["abc\n", "\nghi\n"]

>> s.split("a")
=> ["", "bc\ndef\nghi\n"]

>> s.split (/\w{3}/) # \ w = [a - zA - Z0 -9 _]

=> ["", "\n", "\n", "\n"]

J o i n c o m b i n e un t a b l e a u de sous - c h a i n e s

en u n e c h a i n e u n i q u e .

>> s
=> "abc\ndef\nghi\n"

>> r = s.split("\n")
=> ["abc", "def", "ghi"]

>> r.join("+")
=> "abc+def+ghi"

>> r.join("\n") # D o n c : s . s p l i t (" \ n ") . j o i n (" \ n ") != s

=> "abc\ndef\nghi"

>> []. join(";")
=> ""

>> [’abc’].join(";")
=> "abc"

>> [’abc’, ’def’].join(";")
=> "abc;def"

4.6 Symboles

• Symbol
= objet associé à un identificateur — représen-
tation unique dans la table des symboles

= possède une représentation sous forme
– d’un entier (≈ adresse)
– d’une chaine

. . . mais n’est ni un entier, ni une chaine!

Exemple Ruby 4.10 Les symboles.

>> # S y m b o l e = " s o r t e " de c h a i n e * u n i q u e et i m m u a b l e *.

>> :abc
=> :abc

>> :abc.class
=> Symbol

>> :abc.to_s
=> "abc"

>> puts :abc
abc
=> nil

>> :abc[2]
=> "c"

>> :abc[2] = "x"
NoMethodError: undefined method ’[]=’ for :abc:Symbol

from (irb):4
from /home/tremblay /.rvm/rubies/ruby -2.1.4/ bin/irb :11:in ’<main >’

>> "abc".to_sym
=> :abc

>> "abc def .!#%".to_sym
=> :"abc def .!#%"

?> # P o s s e d e un n u m e r o d ’ i d e n t i f i c a t i o n u n i q u e .

>> :a
=> :a

>> :a.object_id
=> 365128

>> "a".object_id
=> 11000000

>> "a".object_id
=> 10996280

>> :a.object_id
=> 365128

>> "a".to_sym.object_id
=> 365128

?> # E g a l i t e de v a l e u r vs . de r e f e r e n c e .

?>
>> :abc == :abc
=> true

>> :abc.equal? :abc
=> true

>> "abc" == "abc"
=> true

>> "abc".equal? "abc"
=> false

>> "abc".to_sym == :abc
=> true

>> "abc".to_sym.equal? :abc
=> true

4.7 Hashes

Objet Hash ≈ forme généralisée de tableau

• l’index (la clé) est un objet arbitraire, pas juste
un entier

• Autres noms : Dictionnaires, maps

Exemple Ruby 4.11 Les hashes et leurs opérations de base.

>> # D e f i n i t i o n d ’ un h a s h .

?> hash = { :abc => 3, :de => 2, :ghijk => 5 }
=> {:abc=>3, :de=>2, :ghijk=>5}

?> # P r i n c i p a l e s p r o p r i e t e s .

?> hash.size
=> 3

>> hash.keys
=> [:abc , :de, :ghijk]

>> hash.values
=> [3, 2, 5]

>> # I n d e x a t i o n .

?> hash[:abc]
=> ??

>> hash[:de]
=> ??

>> hash["de"]
=> ??

>> # D e f i n i t i o n d ’ un h a s h .

?> hash = { :abc => 3, :de => 2, :ghijk => 5 }
=> {:abc=>3, :de=>2, :ghijk=>5}

?> # P r i n c i p a l e s p r o p r i e t e s .

?> hash.size
=> 3

>> hash.keys
=> [:abc , :de, :ghijk]

>> hash.values
=> [3, 2, 5]

>> # I n d e x a t i o n .

?> hash[:abc]
=> 3

>> hash[:de]
=> 2

>> hash["de"]
=> nil

Exemple Ruby 4.12 Les hashes et leurs opérations de base (suite).

?> # D e f i n i t i o n d ’ u n e n o u v e l l e c l e .

?> hash.include? "de"
=> false

>> hash["de"] = 55
=> 55

>> hash.include? "de"
=> true

?> # R e d e f i n i t i o n d ’ u n e c l e e x i s t a n t e .

?> hash[:abc] = 2300
=> 2300

>> hash
=> {:abc=>2300, :de=>2, :ghijk=>5, "de"=>55}

Exemple Ruby 4.13 Les hashes et leurs opérations de base (suite) : Création et
initialisation.

?> # C r e a t i o n d ’ un H a s h s a n s v a l e u r p a r d e f a u t .

?> h1 = {} # I d e m : h1 = H a s h . n e w

=> {}

>> h1[:xyz]
=> nil

>> # C r e a t i o n d ’ un H a s h a v e c v a l e u r p a r d e f a u t .

?> h2 = Hash.new(0)
=> {}

>> h2[:xyz]
=> 0

>> h2[:abc] += 1
=> 1

>> # C r e a t i o n d ’ un H a s h a v e c v a l e u r p a r d e f a u t .

A t t e n t i o n : La v a l e u r e s t * p a r t a g e e *

p a r t o u t e s l e s c l e s !

?> h3 = Hash.new([])
=> {}

>> p h3[:x], h3[:y]
[]
[]
=> [[], []]

>> h3[:x] << "abc"
=> ["abc"]
>> p h3[:x], h3[:y]
["abc"]
["abc"]
=> [["abc"], ["abc"]]

>> # C r e a t i o n d ’ un H a s h a v e c v a l e u r p a r d e f a u t ,

d e f i n i e v i a un b l o c p o u r a v o i r

u n e n o u v e l l e v a l e u r a c h a q u e f o i s .

>> h4 = Hash.new { |h, k| h[k] = [] }
=> {}

>> p h4[:x], h4[:y]
[]
[]
=> [[], []]

>> h4[:x] << "abc"
=> ["abc"]
>> p h4[:x], h4[:y]
["abc"]
[]
=> [["abc"], []]

4.8 Expressions booléennes

Le point important à retenir pour comprendre les
expressions booléennes :

• false et nil sont des valeurs «fausses»

• Toute autre valeur est «vraie».

Quelques exemples avec l’opérateur ternaire ?: :
>> false ? ’oui’ : ’non’
=> "non"

>> nil ? ’oui’ : ’non’
=> ’non’

>> 0 ? ’oui’ : ’non’
=> "oui"

>> ’’ ? ’oui’ : ’non’
(irb):5: warning: string literal in condition
=> "oui"

>> nil.nil? ? ’nil’ : ’pas nil’
=> "nil"

Exemple Ruby 4.14 Les expressions booléennes.

>> # T o u t e v a l e u r d i f f e r e n t e de f a l s e ou n i l e s t v r a i e .

?> true ? ’oui’ : ’non’
=> "oui"

>> 0 ? ’oui’ : ’non’
=> "oui"

>> [] ? ’oui’ : ’non’
=> "oui"

?> # S e u l s f a l s e et n i l ne s o n t p a s v r a i e s .

?> false ? ’oui’ : ’non’
=> "non"

>> nil ? ’oui’ : ’non’
=> "non"

>> !false ? ’oui’ : ’non’
=> "oui"

>> !nil ? ’oui’ : ’non’
=> "oui"

?> # S e u l n i l e s t n i l

?> 2.nil? ? ’nil’ : ’pas nil’
=> "pas nil"

>> []. nil? ? ’nil’ : ’pas nil’
=> "pas nil"

>> nil.nil? ? ’nil’ : ’pas nil’
=> "nil"

Exemple Ruby 4.15 Les expressions booléennes (suite 1).

?> # L e s e x p r e s s i o n s && et || s o n t co ur t - c i r c u i t e e s .

?> true || (3 / 0) ? true : false
=> true

>> false && (3 / 0) ? true : false
=> false

?> false || (3 / 0) ? true : false
ZeroDivisionError: divided by 0

[...]

>> true && (3 / 0) ? true : false
ZeroDivisionError: divided by 0

[...]

Exemple Ruby 4.16 Les expressions booléennes (suite 2).

>? # L ’ o p e r a t e u r || r e t o u r n e la p r e m i e r e e x p r e s s i o n

’ n o n f a u s s e ’ , s i n o n r e t o u r n e la d e r n i e r e e x p r e s s i o n .

?> 2 || 3
=> ??

>> nil || false || 2 || false
=> ??

>> nil || false
=> ??

>> false || nil
=> ??

>? # L ’ o p e r a t e u r || r e t o u r n e la p r e m i e r e e x p r e s s i o n

’ n o n f a u s s e ’ , s i n o n r e t o u r n e la d e r n i e r e e x p r e s s i o n .

?> 2 || 3
=> 2

>> nil || false || 2 || false
=> 2

>> nil || false
=> false

>> false || nil
=> nil

Exemple Ruby 4.17 Les expressions booléennes (suite 3).

On p e u t u t i l i s e r | | = p o u r i n i t i a l i s e r u n e v a r i a b l e ,

s a u f si e l l e e s t d e j a i n i t i a l i s e e .

>> x
NameError: undefined local variable or method ’x’ for main:Object

[...]

>> x ||= 3
=> 3
>> x
=> 3

>> x ||= 8
=> 3
>> x
=> 3

Abréviations :
x += 1 # x = x + 1

x /= 2 # x = x / 2

x ||= 1 # x | | x = 1 E T n o n p a s x = x | | 1

x &&= 1 # x & & x = 1 E t n o n p a s x = x & & 1

4.9 Définitions et appels de méthodes

Exemple Ruby 4.18 Définitions et appels de méthodes.

>> # D e f i n i t i o n et a p p e l s de m e t h o d e .

def add(x, y)
x + y

end

>> add(2, 3)
=> 5
>> add 20, 30 # L e s p a r e n t h e s e s s o n t o p t i o n n e l l e s .

=> 50

>> # R e s u l t a t = d e r n i e r e e x p r e s s i o n e v a l u e e .

def abs(x)
if x < 0 then -1 * x else x end

end

>> abs(3)
=> 3
>> abs(-3)
=> 3

>> # On u t i l i s e r e t u r n p o u r s o r t i r ’ a v a n t la f i n ’.

def abs2(x)
return x if x >= 0

-x
end

>> abs2(23)
=> 23
>> abs2(-23)
=> 23

Remarque : «;» est un séparateur!
def add(x, y); x + y; end

Remarque : «return» est implicite
def add(x, y)

x + y
end

def add(x, y)
return x + y

end

Attention : Parenthèses et appels de méthodes :
add(2, 3) # OK ,
add 2, 3 # OK ,
add (2, 3) # P a s O K /
add (1+1), (2+1) # OK ,

Exemple Ruby 4.19 Appels de méthodes et envois de messages.

>? # Un o p e r a t e u r e s t u n e m e t h o d e .

?> 2 + 3
=> 5

>> 2.+(3)
=> 5

>> 2.+ 3
=> 5

>? # Un a p p e l de m e t h o d e e s t un e n v o i de m e s s a g e .

>? 2.+(3)
=> 5

>> 2.send(:+, 3)
=> 5

4.10 Structures de contrôle

Exemple Ruby 4.20 Structures de contrôles: if.

>> # I n s t r u c t i o n c o n d i t i o n n e l l e c l a s s i q u e .

def div(x, y)
if y == 0

fail "Oops! Division par zero :("
else

x / y
end

end

>> div(12, 3)
=> 4

>> div(12, 0)
RuntimeError: Oops! Division par zero :(

from (irb):4:in ’div’
[...]
from /home/tremblay /.rvm/rubies/jruby -1.7.16.1/ bin/irb :13:in ’(root)’

>> # G a r d e (c o n d i t i o n) if a s s o c i e e a u n e i n s t r u c t i o n .

def div(x, y)
fail "Oops! Division par zero :(" if y == 0

x / y
end

>> div(12, 3)
=> 4

Exemple Ruby 4.21 Structures de contrôles: while.

?> # I n s t r u c t i o n w h i l e .

def pgcd(a, b)
On d o i t a v o i r a <= b .

return pgcd(b, a) if a > b

while b > 0
a, b = b, a % b

end

a
end

>> pgcd(12, 8)
=> 4
>> pgcd(80, 120)
=> 40

Affectations multiples (parallèles) :
x, y = y, x

x, y, z = [10, 20, 30]
x == 10 && y == 20 && z == 30

x, y = [10, 20, 30]
x == 10 && y == 20

x, *y = [10, 20, 30]
x == 10 && y == [20 , 3 0]

Exemple Ruby 4.22 Structures de contrôles : Itération sur les index avec for et
each_index.

?> # I n s t r u c t i o n f o r

def somme(a)
total = 0
for i in 0...a.size

total += a[i]
end

total
end

>> somme([10, 20, 30])
=> 60

?> # I t e r a t e u r e a c h _ i n d e x .

def somme(a)
total = 0
a.each_index do |i|

total += a[i]
end

total
end

>> somme([10, 20, 30])
=> 60

Exemple Ruby 4.23 Structures de contrôles : Itération sur les éléments avec for
et each.

?> # I n s t r u c t i o n f o r (b i s)

def somme(a)
total = 0
for x in a

total += x
end

total
end

>> somme([10, 20, 30])
=> 60

?> # I t e r a t e u r e a c h .

def somme(a)
total = 0
a.each do |x|

total += x
end

total
end

>> somme([10, 20, 30])
=> 60

4.11 Paramètres des méthodes

Exemple Ruby 4.24 Paramètres des méthodes : valeur par défaut et nombre
variable d’arguments.

?> # A r g u m e n t o p t i o n n e l et v a l e u r p a r d e f a u t .

def foo(x, y = 40)
x + y

end

>> foo(3, 8)
=> ??

>> foo(3)
=> ??

?> # A r g u m e n t o p t i o n n e l et v a l e u r p a r d e f a u t .

def foo(x, y = 40)
x + y

end

>> foo(3, 8)
=> 11

>> foo(3)
=> 43

>> # N o m b r e v a r i a b l e d ’ a r g u m e n t s .

def bar(x, *args , y)
"bar(#{x}, #{args}, #{y})"

end

>> bar(1, 2, 3, 4, 5)
=> ??

>> bar(1, 2)
=> ??

>> bar(23)
??
??
??
??

>> # N o m b r e v a r i a b l e d ’ a r g u m e n t s .

def bar(x, *args , y)
"bar(#{x}, #{args}, #{y})"

end

>> bar(1, 2, 3, 4, 5)
=> "bar(1, [2, 3, 4], 5)"

>> bar(1, 2)
=> "bar(1, [], 2)"

>> bar(23)
ArgumentError: wrong number of arguments (1 for 2+)

from (irb):24:in ’bar’
from (irb):27
from /home/tremblay /.rvm/rubies/ruby -2.1.4/ bin/irb :11:in ’<main >’

Exemple Ruby 4.25 Paramètres des méthodes : arguments par mots-clés (keyword
arguments).

>> # A r g u m e n t s p a r mot - c l e s (k e y w o r d a r g u m e n t s).

def diviser(numerateur:, denominateur: 1)
numerateur / denominateur

end

>> diviser numerateur: 12, denominateur: 3
=> 4

>> diviser denominateur: 3, numerateur: 12
=> 4

>> diviser numerateur: 12
=> 12

>> diviser 10
ArgumentError: missing keyword: numerateur

from (irb):31
from /home/tremblay /.rvm/rubies/ruby -2.1.4/ bin/irb :11:in ’<main >’

?> # A r g u m e n t p a r mot - c l e .

def premier_index(a, x, res_si_absent: nil)
a.each_index do |i|

return i if a[i] == x
end
res_si_absent

end

>> premier_index([10, 20, 10, 20], 10)
=> 0
>> premier_index([10, 20, 10, 20], 88)
=> nil
>> premier_index([10, 20, 10, 20], 88, res_si_absent: -1)
=> -1

Autre façon, mais moins claire :
def premier_index(a, x, res_si_absent = nil)

...
end

premier_index([10, 20, 10, 20], 88, -1)

Soit la méthode suivante :
def foo(x, y, z = nil)

return x + y * z if z

x * y
end

Indiquez ce qui sera affiché par chacun des appels suivants :
a .

puts foo(2, 3)

b .

puts foo 2, 3, 5

c .

puts foo("ab", "cd", 3)

d .

puts foo("ab", "cd")

Exercice 4.1: Définition et utilisation de méthodes diverses
avec plusieurs sortes d’arguments.

Soit la méthode suivante :
def bar(v = 0, *xs)

m = v
xs.each do |x|

m = [m, x].max
end

m
end

Indiquez ce qui sera affiché par chacun des appels suivants :

a .

puts bar

b .

puts bar(123)

c .

puts bar(0, 10, 20, 99, 12)

Exercice 4.2: Définition et utilisation de méthodes diverses
avec plusieurs sortes d’arguments.

Soit le segment de code suivant :
def foo(x, *y, z = 10)

x + y.size + z
end

puts foo(10, 20, 30)

Qu’est-ce qui sera affiché?
Exercice 4.3: Définition d’une méthode avec plusieurs
sortes d’arguments.

4.12 Définitions de classes

Exemple Ruby 4.26 Un script avec une classe (simple) pour des cours.

$ cat cours.rb
D e f i n i t i o n d ’ u n e c l a s s e (s i m p l e !) p o u r d e s c o u r s .

class Cours
attr_reader :sigle

def initialize(sigle , titre , *prealables)
@sigle = sigle
@titre = titre
@prealables = prealables

end

def to_s
sigles_prealables = " "
@prealables.each do |c|

sigles_prealables << "#{c.sigle} "
end

"< #{ @sigle} ’#{@titre}’ (#{ sigles_prealables }) >"
end

end

. . . (suite du fichier page suivante). . .

Exemple Ruby 4.26 Un script avec une classe (simple) pour des cours (suite).
Note : «$0» = nom du programme Ruby en cours d’exécution.

if $0 == __FILE__
D e f i n i t i o n de q u e l q u e s c o u r s .

inf1120 = Cours.new(:INF1120 , ’Programmation I’)
inf1130 = Cours.new(:INF1130 , ’Maths pour informaticien ’)
inf2120 = Cours.new(:INF2120 , ’Programmation II’,

inf1120)
inf3105 = Cours.new(:INF3105 , ’Str. de don.’,

inf1130 , inf2120)

puts inf1120
puts inf3105
puts inf1120.sigle
puts inf1120.titre

end

Exemple Ruby 4.27 Appel du script avec une classe pour des cours.

$ ruby cours.rb
< INF1120 ’Programmation I’ () >
< INF3105 ’Str. de don.’ (INF1130 INF2120) >
INF1120
NoMethodError: undefined method ‘titre’ for #<Cours :0x13969fbe >

(root) at cours.rb:34

Une «déclaration» «attr_reader :sigle» définit
un attribut accessible en lecture, équivalent à la
méthode suivante :

def sigle
@sigle

end

Note : En fait, «attr_reader :sigle» représente
un appel à la méthode attr_reader avec l’argument
:sigle. Voir plus loin.

Pour la classe Cours, définissez une méthode qui permet
d’obtenir le titre d’un cours et une autre méthode qui permet
de modifier le titre d’un cours.

Utilisez ensuite cette dernière méthode pour changer le titre
du cours inf1120 en "Programmation Java I".
Exercice 4.4: Méthodes pour lire et modifier le titre d’un
cours.

4.13 Lambda-expressions

Les lambda-expressions — λ-expressions — sont le
fondement de la programmation fonctionnelle.

Exemple Ruby 4.28 Les lambda-expressions : type et méthodes de base.

>> # U n e l a m b d a - e x p r e s s i o n r e p r e s e n t e un ob je t ,

de c l a s s e Proc , qu ’ on p e u t ’ a p p e l e r ’.

Un P r o c e s t d o n c u n e " f o n c t i o n a n o n y m e ".

?> lambda { 0 }.call
=> 0

>> zero = lambda { 0 }
=> #<Proc:0 x5c5eefef@(irb):2 (lambda)>

>> zero.class
=> Proc

>> zero.arity # L a m b d a a v e c 0 a r g u m e n t !

=> 0
>> zero.parameters
=> []

>> zero.call
=> 0

?> # U n e l a m b d a - e x p r e s s i o n p e u t a v o i r d e s a r g u m e n t s .

?> inc = lambda { |x| x + 1 }
=> #<Proc:0 x16293aa2@(irb):8 (lambda)>

>> inc.arity
=> 1

>> inc.parameters
=> [[:req , :x]]

>> inc.call(3)
=> 4

Et le n o m b r e d ’ a r g u m e n t s e s t v e r i f i e !

>> inc.call
ArgumentError: wrong number of arguments (0 for 1)

from [...]
>> inc.call(10, 20)
ArgumentError: wrong number of arguments (2 for 1)

from [...]

?> double = lambda do |y|
?> y + y
>> end
=> #<Proc:0 x5158b42f@(irb):11 (lambda)>

>> double.arity
=> 1

>> double.call(3)
=> 6

Exemple Ruby 4.29 Les lambda-expressions, comme n’importe quel autre objet,
peuvent être transmises en argument.

>> # U n e m e t h o d e p o u r e x e c u t e r d e u x f o i s du c o d e (s a n s a r g .) .

def deux_fois(f)
f.call
f.call

end

>> deux_fois(lambda { print ’Bonne ’; print ’journee !\n’ })
Bonne journee!
Bonne journee!
=> nil

>> deux_fois lambda { print ’Bonne ’; print ’journee !\n’ }
Bonne journee!
Bonne journee!
=> nil

?> # Ici , l e s () s o n t o b l i g a t o i r e s , s i n o n e r r e u r de s y n t a x e . . .

?> deux_fois(lambda do
print ’Bonne ’
print ’journee !\n’

end)
Bonne journee!
Bonne journee!
=> nil

Exemple Ruby 4.30 Les lambda-expressions, comme n’importe quel objet, peu-
vent être retournées comme résultat d’une fonction.

?> # U n e l a m b d a - e x p r e s s i o n p e u t e t r e r e t o u r n e e c o m m e r e s u l t a t .

?> def plus_x(x)
lambda { |y| x + y }

end

>> plus_x (3). call (12)
=> 15

?> plus_bis = lambda { |a| lambda { |b| a + b } }
=> #<Proc:0 x2d7275fc@(irb):44 (lambda)>

>> plus_bis.call (3). call (12)
=> 15

Exemple Ruby 4.31 Le bloc d’une lambda-expression capture les variables non-
locales.

?> # Le b l o c d ’ u n e l a m b d a - e x p r e s s i o n ’ c a p t u r e ’

l e s v a r i a b l e s non - l o c a l e s u t i l i s e e s d a n s le b l o c .

?> x = 23
=> 23

>> plus_x = lambda { |y| x + y }
=> #<Proc:0 x72d1ad2e@(irb):31 (lambda)>

>> plus_x.call (7)
=> 30

>> x = 999
=> 999

>> plus_x.call 2
=> 1001

Exemple Ruby 4.32 Les appels à une lambda-expression peuvent aussi être faits
avec «.()» plutôt qu’avec call — mais c’est rarement utilisé!

>> lambda { 0 }.()
=> 0

>> zero = lambda { 0 }
=> #<Proc:0 x5c5eefef@(irb):2 (lambda)>

>> zero .()
=> 0

>> inc = lambda { |x| x + 1 }
=> #<Proc:0 x16293aa2@(irb):8 (lambda)>

>> inc.(3)
=> 4

Pour la classe Cours :

a. Définissez une méthode prealables qui reçoit en argu-
ment un predicat — une lambda-expression — et qui
retourne la liste des préalables du cours qui satisfont ce
predicat.

b. Utilisez la méthode prealables pour obtenir les préal-
ables du cours inf3105 dont le sigle contient la chaine
"INF".

Remarque : Pour ce dernier point, vous devez
utiliser une expression de pattern-matching. En Ruby,
l’expression suivante retourne un résultat non nil si x,
une chaine, matche le motif INF :

/INF/ =~ x

Plus précisément, l’expression retourne nil si le motif
n’apparait pas dans la chaine, sinon elle retourne la po-
sition du premier match.

Exercice 4.5: Une méthode pour identifier un sous-
ensemble de préalables d’un cours.

4.14 Blocs

Un bloc est un segment de code entre accolades {. . . }
ou entre do. . . end :

a.each { |x| total += x }

a.each_index do |i|
total += a[i]

end

inc = lambda { |x| x + 1 }

double = lambda do |y|
y + y

end

Un bloc est un segment de code entre accolades {. . . }
ou entre do. . . end :

a.each { |x| total += x }

a.each_index do |i|
total += a[i]

end

inc = lambda { |x| x + 1 }

double = lambda do |y|
y + y

end

Mais plus important :

A block is a chunk of code that can be passed
to an object/method and [can be] executed
under the context of that object.

https: // scotch. io/ tutorials/ understanding-ruby-closures

Un bloc est semblable à une lambda-expression,
mais pas tout à fait identique :

Lambda-expression Bloc
Objet (Proc) créé de
façon explicite

Utilisée comme argu-
ment implicite d’une
méthode

Évalué avec call Évalué avec yield
Peut être transformé
en Proc (argument ex-
plicite d’une méthode)

https://scotch.io/tutorials/understanding-ruby-closures

L’utilisation des blocs en Ruby est étroitement liée
à l’instruction yield.

Quelques définitions du verbe anglais «to yield» :

• to produce (something) as a result of time, ef-
fort, or work

• to surrender or relinquish to the physical control
of another : hand over possession of

Quelques traductions françaises possibles du verbe
«to yield» sont «céder» ou «produire».

yield, exécutée dans une méthode, a l’effet suivant :

• elle évalue le bloc passé en argument

• mais. . .

• ce bloc peut ne pas apparaitre dans la liste des
arguments

Exemple Ruby 4.33 Une méthode pour exécuter deux fois un bout de code —
avec un bloc.

>> # U n e a u t r e m e t h o d e p o u r e x e c u t e r d e u x _ f o i s du code , a v e c b l o c !

def deux_fois
yield
yield

end

>> deux_fois { print ’Bonne ’; print ’journee !\n’ }
Bonne journee!
Bonne journee!
=> nil

>> deux_fois do
print ’Bonne ’
print ’journee !\n’

end
Bonne journee!
Bonne journee!
=> nil

>> deux_fois
LocalJumpError: no block given (yield)

from (irb):1:in ’deux_fois ’
from (irb):3
from /home/tremblay /.rvm/rubies/ruby -2.1.4/ bin/irb :11:in ’<main >’

>> # M e t h o d e p o u r e x e c u t e r k f o i s du c o d e .

def k_fois(k)
k.times do

yield
end

end

>> k_fois(3) do
print ’Bonne ’
print ’journee !\n’

end
Bonne journee!
Bonne journee!
Bonne journee!

Exemple Ruby 4.34 Une méthode pour évaluer une expression — avec lambda,
avec bloc implicite et avec bloc explicite.

>> # M e t h o d e p o u r e v a l u e r u n e e x p r e s s i o n : a v e c l a m b d a .

def evaluer(x, y, expr)
expr.call(x, y)

end

>> evaluer(10, 20, lambda { |v1 , v2| v1 + v2 })
=> 30

–––-

>> # M e t h o d e p o u r e v a l u e r u n e e x p r e s s i o n : a v e c b l o c i m p l i c i t e .

def evaluer(x, y)
yield(x, y)

end

>> evaluer(10, 20) { |a, b| a * b }
=> 200

>> # M e t h o d e p o u r e v a l u e r u n e e x p r e s s i o n : a v e c b l o c e x p l i c i t e .

def evaluer(x, y, &expr)
expr.call(x, y)

end

>> evaluer(10, 20) { |a, b| b / a }
=> 2

>> # On p e u t v e r i f i e r si un b l o c a e t e p a s s e ou n o n .

def evaluer(x, y)
return 0 unless block_given?
yield(x, y)

end

>> evaluer(10, 20) { |a, b| b / a }
=> 2
>> evaluer(10, 20)
=> 0

>> def foo(&b)
[b.class , b.arity , b.parameters] if block_given?

end
=> :foo

>> foo
=> nil

>> foo { 2 }
=> [Proc , 0, []]

>> foo { |x| x + 1 }
=> [Proc , 1, [[:opt , :x]]]

Remarque concernant les deux formes de bloc :
Au niveau sémantique, les deux formes de blocs —
avec accolades {... } et avec do... end — sont
équivalentes.

Il existe toutefois une différence au niveau de la
priorité lors de l’analyse syntaxique :

Avec accolades => priorité + forte
foo bar { ... }

Équivalent
foo(bar() { ... })

Avec accolades => priorité - forte
foo bar do ... end

Équivalent
foo(bar()) { ... }

4.15 Portée des variables

sigil (Ésotérisme) Symbole graphique ou sceau
représentant une intention ou un être magique.
Source : https://fr.wiktionary.org/wiki/sigil

Ruby utilise un certain nombre de sigils pour indi-
quer la portée des variables :

foo variable locale
@foo variable d’instance
@@foo variable de classe
$foo variable globale

https://fr.wiktionary.org/wiki/sigil

(Même question que la précédente, mais en utilisant un bloc.)

Pour la classe Cours :

a. Définissez une méthode prealables qui reçoit en argu-
ment un predicat — représenté par un bloc — et qui
retourne la liste des prélables du cours qui satisfont ce
predicat.

b. Utilisez la méthode prealables pour obtenir les
prélables du cours inf3105 dont le sigle contient la
chaine "INF".

Remarque : Pour ce dernier point, vous devez
utiliser une expression de pattern-matching. En Ruby,
l’expression suivante retourne un résultat non nil si x,
une chaine, matche le motif INF :

/INF/ =~ x

Plus précisément, l’expression retourne nil si le motif
n’apparait pas dans la chaine, sinon elle retourne la po-
sition du premier match.

Exercice 4.6: Une méthode pour identifier un sous-
ensemble de préalables d’un cours.

Exemple Ruby 4.35 Illustration de la vie et portée des variables.

>> # U n e d e f i n i t i o n de m e t h o d e ne v o i t p a s

l e s v a r i a b l e s non - l o c a l e s .

?> x = 22
=> 22

>> def set_x
x = 88

end
=> :set_x

>> set_x
=> 88

>> x # I n c h a n g e e !

=> 22

?> # Un b l o c c a p t u r e l e s v a r i a b l e s non - l o c a l e s

si e l l e s e x i s t e n t .

?> def executer_bloc
yield

end
=> :executer_bloc

>> x = 44
=> 44

>> executer_bloc { x = 55 }
=> 55

>> x # M o d i f i e e !

=> 55

?> # Si la v a r i a b l e n ’ e x i s t e p a s deja ,

a l o r s e s t s t r i c t e m e n t l o c a l e au b l o c .

?> z
NameError: undefined local variable or method ’z’ for main:Object
[...]

?> executer_bloc { z = 88 }
=> 88

>> z
NameError: undefined local variable or method ’z’ for main:Object
[...]

>> # U n e v a r i a b l e g l o b a l e e s t a c c e s s i b l e p a r t o u t !

?> $x_glob = 99
=> 99

>> def set_x_glob
$x_glob = "abc"

end
=> :set_x_glob

>> set_x_glob
=> "abc"

>> $x_glob
=> "abc"

>> lambda { $x_glob = [10, 20] }.call
=> [10, 20]

>> $x_glob
=> [10, 20]

>> # U n e v a r i a b l e l o c a l e e s t a c c e s s i b l e d a n s l ’ e n s e m b l e

de la m e t h o d e .

?> def foo(x)
if x <= 0 then a = 1 else b = "BAR" end
[a, b]

end
=> :foo

>> foo(0)
=> [1, nil]

>> foo(99)
=> [nil , "BAR"]

>> # M a i s un b l o c d e f i n i t u n e n o u v e l l e p o r t e e , a v e c d e s v a r i a b l e s

s t r i c t e m e n t l o c a l e s !

?> def bar(*args)
args.each do |x|

r = 10
puts x * r

end
r

end
=> :bar

>> bar(10, 20)
100
200
NameError: undefined local variable or method ’r’ for main:Object

[...]

4.16 Modules

Modules are a way of grouping together meth-
ods, classes, and constants. Modules give
you two major benefits:

1. Modules provide a namespace and prevent
name clashes.

2. Modules implement the mixin facility.

Source : http://ruby-doc.com/docs/ProgrammingRuby/html/tut_modules.html

http://ruby-doc.com/docs/ProgrammingRuby/html/tut_modules.html

Exemple Ruby 4.36 Les modules comme espaces de noms.

module M1
C1 = 0

end

module M2
C1 = ’abc’

end

module M3
module M4

C1 = :c1
end

end

M1::C1 == 0 # = > t r u e

M2::C1 == ’abc’ # = > t r u e

M3::M4::C1 == :c1 # = > t r u e

M1::C1 != M2::C1 # = > t r u e

M1::C1 != M3::M4::C1 # = > t r u e

...

module Module1
def self.zero

0
end

def un
1

end

def val_x
@x

end

def inc_inc(y)
inc(y)
inc(y)

end
end

class C1
include Module1

def initialize(x)
@x = x

end

def inc(y)
@x += y

end
end

class C2
include Module1

end

Exemple Ruby 4.37 Un module mixin Module1 et son utilisation.

>> # A p p e l s u r le m o d u l e de la m e t h o d e de c l a s s e .

?> Module1.zero
=> 0

>> # A p p e l s u r le m o d u l e de la m e t h o d e d ’ i n s t a n c e .

?> Module1.un
NoMethodError: undefined method ’un’ for Module1:Module

...

>> # A p p e l s u r un o b j e t C1 d e s m e t h o d e s

?> # de c l a s s e et d ’ i n s t a n c e du m o d u l e .

?> c1 = C1.new(99)
=> #<C1:0 x12cf7ab @x=99>

>> c1.zero
NoMethodError: undefined method ’zero’ for #<C1:0 x12cf7ab @x=99>

...
>> c1.un
=> 1
>> c1.val_x
=> 99
>> c1.inc_inc(100)
=> 299

>> # A p p e l s u r un o b j e t C2 d e s m e t h o d e s

?> # de c l a s s e et d ’ i n s t a n c e du m o d u l e .

?> c2 = C2.new
=> #<C2:0x1a8622 >
>> c2.un
=> 1
>> c2.val_x
=> nil
>> c2.inc_inc(100)
NoMethodError: undefined method ’inc’ for #<C2:0x1a8622 >

...

NomDuModule.nom_methode

NomDuModule :: nom_methode

module Module1
def self.zero

0
end

def un
1

end

def val_x
@x

end

def inc_inc(y)
inc(y); inc(y)

end
end

?> Module1.zero
=> ??

?> Module1.un
??

...

?> Module1.val_x
??

...

module Module1
def self.zero

0
end

def un
1

end

def val_x
@x

end

def inc_inc(y)
inc(y); inc(y)

end
end

class C1
include Module1

def initialize(x)
@x = x

end

def inc(y)
@x += y

end
end

#

?> c1 = C1.new(99)
=> #<C1:0x12cf7ab @x=99>

>> c1.zero
??

...

>> c1.un
=> ??

>> c1.val_x
=> ??

>> c1.inc_inc(100)
=> ??

module Module1
def self.zero

0
end

def un
1

end

def val_x
@x

end

def inc_inc(y)
inc(y); inc(y)

end
end

class C2
include Module1

end

#

?> c2 = C2.new
=> #<C2:0x1a8622>

>> c2.un
=> ??

>> c2.val_x
=> ??

>> c2.inc_inc(100)
??

...

module Module1
def self.zero

0
end

def un
1

end

def val_x
@x

end

def inc_inc(y)
inc(y); inc(y)

end
end

?> Module1.zero
=> 0

?> Module1.un
NoMethodError: undefined method ’un’ for Module1:Module

...

?> Module1.val_x
NoMethodError: undefined method ’val_x’ for Module1:Module

...

module Module1
def self.zero

0
end

def un
1

end

def val_x
@x

end

def inc_inc(y)
inc(y); inc(y)

end
end

class C1
include Module1

def initialize(x)
@x = x

end

def inc(y)
@x += y

end
end

#

?> c1 = C1.new(99)
=> #<C1:0x12cf7ab @x=99>

>> c1.zero
NoMethodError: undefined method ’zero’ for #<C1:0x12cf7ab @x=99>

...

>> c1.un
=> 1

>> c1.val_x
=> 99

>> c1.inc_inc(100)
=> 299

module Module1
def self.zero

0
end

def un
1

end

def val_x
@x

end

def inc_inc(y)
inc(y); inc(y)

end
end

class C2
include Module1

end

#

?> c2 = C2.new
=> #<C2:0x1a8622>

>> c2.un
=> 1

>> c2.val_x
=> nil

>> c2.inc_inc(100)
NoMethodError: undefined method ’inc’ for #<C2:0x1a8622>

...

4.17 Modules Enumerable et Comparable

4.17.1 Module Enumerable

Learn to use Enumerable. You will not be a rubyist
until you do.
«Ruby QuickRef», R. Davis

(http: // www. zenspider. com/ Languages/ Ruby/ QuickRef. html)

La figure à la page ?? présente la liste des méthodes
du module Enumerable — donc les diverses métho-
des disponibles lorsque la méthode each est définie
par une classe et que le module Enumerable est in-
clus (avec include)!

http://www.zenspider.com/Languages/Ruby/QuickRef.html

Exemple Ruby 4.38 Exemples d’utilisation du module Enumerable.

?>> # La c l a s s e A r r a y d e f i n i t la m e t h o d e e a c h et

i n c l u t le m o d u l e E n u m e r a b l e .

>> a = [10, 20, 30, 40]
=> [10, 20, 30, 40]

?> # A p p a r t e n a n c e d ’ un e l e m e n t .

?> a.include? 20
=> true

>> a.include? 999
=> false

>> a
=> [10, 20, 30, 40]

?> # A p p l i c a t i o n f o n c t i o n n e l l e .

?> a.map { |x| x + 2 } # S y n o n y m e = c o l l e c t .

=> [12, 22, 32, 42]

>> a ??
=> ??

?> # A p p l i c a t i o n i m p e r a t i v e (m u t a b l e)!

>> a.map! { |x| 10 * x }
=> [100, 200, 300, 400]

>> a ??
=> ??

>> a
=> [10, 20, 30, 40]

?> # A p p l i c a t i o n f o n c t i o n n e l l e .

?> a.map { |x| x + 2 } # S y n o n y m e = c o l l e c t .

=> [12, 22, 32, 42]

>> a # a n’est pas modifie.
=> [10, 20, 30, 40]

?> # A p p l i c a t i o n i m p e r a t i v e (m u t a b l e)!

>> a.map! { |x| 10 * x }
=> [100, 200, 300, 400]

>> a # a est modifie!
=> [100, 200, 300, 400]

?> # S e l e c t i o n / r e j e t d ’ e l e m e n t s s e l o n un c r i t e r e .

>> a.select { |x| x >= 300 }
=> [300, 400]

>> a.reject { |x| x >= 300 }
=> [100, 200]

>> a
=> [100, 200, 300, 400]

Il e x i s t e a u s s i d e s v a r i a n t e s i m p e r a t i v e s / m u t a b l e s :

s e l e c t !

r e j e c t !

?> # O b t e n t i o n du p r e m i e r e l e m e n t q u i s a t i s f a i t un c r i t e r e .

>> a
=> [100, 200, 300, 400]

>> a.find { |x| x > 200 } # S y n o n y m e = d e t e c t .

=> 300

>> a.find { |x| x < 0 }
=> nil

?> # Q u a n t i f i c a t e u r s .

?> a.all? { |x| x > 0 }
=> true

>> a.any? { |x| x > 500 }
=> false

?> # R e d u c t i o n a v e c un o p e r a t e u r b i n a i r e .

>> a
=> [100, 200, 300, 400]

?> a.reduce { |x, y| x + y } # S y n o n y m e = i n j e c t .

=> 1000

>> a.reduce(:+)
=> 1000

>> a.reduce(&:+)
=> 1000

>> a.reduce(:*)
=> 2400000000

>> a.reduce(999, :+)
=> 1999

?> # A u t r e s e x e m p l e s de r e d u c t i o n , a v e c o p e r a t e u r s d i v e r s .

>> a.reduce (0) { |max , x| x > max ? x : max }
=> ??

>> a.map { |x| x / 10 }
=> ??

>> a.reduce ([]) { |a, x| a << x / 10 }
=> ??

>> a.reduce ([]) { |ar, x| [x] + ar + [x] }
=> ??

?> # A u t r e s e x e m p l e s de r e d u c t i o n , a v e c o p e r a t e u r s d i v e r s .

>> a.reduce (0) { |max , x| x > max ? x : max }
=> 400

>> a.map { |x| x / 10 }
=> [10, 20, 30, 40]

>> a.reduce ([]) { |a, x| a << x / 10 }
=> [10, 20, 30, 40]

>> a.reduce ([]) { |ar, x| [x] + ar + [x] }
=> [400, 300, 200, 100, 100, 200, 300, 400]

Note : Le a de a.reduce (défini au niveau global) est distinct
du a dans a << x (paramètre, donc identificateur stricte-
ment local au bloc).

?> # R e g r o u p e m e n t , d a n s un Hash , d e s e l e m e n t s

a v e c u n e m e m e v a l e u r s p e c i f i e e p a r le b l o c .

>> a.group_by { |x| x }
=> {100= >[100] , 200= >[200] , 300= >[300] , 400= >[400]}

>> a.group_by { |x| x >= 222 }
=> {false =>[100, 200], true=>[300, 400]}

>> a.group_by { |x| x / 100 }
=> {1= >[100] , 2=>[200], 3=>[300], 4= >[400]}

>> a.group_by { |x| x % 2 }
=> {0=>[100, 200, 300, 400]}

>> a.group_by { |x| (x / 100) % 2 }
=> {1=>[100, 300], 0=>[200, 400]}

?> # < < A p l a t i s s e m e n t > > d e s e l e m e n t s d ’ un t a b l e a u .

>> [10, 20, 30]. flatten
=> [10, 20, 30]

>> [10, [20, 30], [40], [], [50], 60]. flatten
=> [10, 20, 30, 40, 50, 60]

>> [10, [20, 30], [[40] , []], [[[50]]] , 60]. flatten
=> [10, 20, 30, 40, 50, 60]

f . f l a t _ m a p { | x | . . . } = f . m a p { | x | . . . }. f l a t t e n

>> [1, 2, 3].map { |n| [*1..n] }
=> [[1], [1, 2], [1, 2, 3]]

>> [1, 2, 3].map { |n| [*1..n] }. flatten
=> [1, 1, 2, 1, 2, 3]

>> [1, 2, 3]. flat_map { |n| [*1..n] }
=> [1, 1, 2, 1, 2, 3]

Exemple Ruby 4.39 Une mise en oeuvre, en Ruby, de quelques méthodes du mo-
dule Enumerable, méthodes qui utilisent la méthode each de la classe ayant exécuté
l’appel «include Enumerable».

M i s e en o e u v r e p o s s i b l e , en Ruby , de q u e l q u e s m e t h o d e s

du m o d u l e E n u m e r a b l e : on u t i l i s e * u n i q u e m e n t * e a c h !

module Enumerable
def include ?(elem)

each do |x|
return true if x == elem

end

false
end

def find
each do |x|

return x if yield(x)
end

nil
end

def reduce(val_initiale)
A u t r e a r g u m e n t i m p l i c i t e = b l o c r e c e v a n t d e u x a r g u m e n t s .

accum = val_initiale
each do |x|

accum = yield(accum , x)
end

accum
end

end

Donnez une mise en oeuvre, dans un style fonctionnel, de la
méthode to_s de la classe Cours vue précédemment.
Exercice 4.7: Mise en oeuvre fonctionnelle de Cours#to_s.

4.17.2 Module Comparable

La figure ci-bas présente la liste des méthodes du
module Comparable, c’est-à-dire, les diverses métho-
des disponibles lorsque la méthode <=> est définie
par une classe et que le module Comparable est
inclus (avec include)!

Exemple Ruby 4.40 Tris avec Enumerable et <=>.

>> # C o m p a r a i s o n a v e c l ’ o p e r a t e u r ’ s p a c e s h i p ’.

?> 29 <=> 33
=> -1
>> 29 <=> 29
=> 0
>> 29 <=> 10
=> 1

>> # T r i s .

>> a = [29, 10, 44, 33]
=> [29, 10, 44, 33]

>> a.sort
=> [10, 29, 33, 44]

>> a.sort { |x, y| x <=> y }
=> [10, 29, 33, 44]

>> a.sort { |x, y| -1 * (x <=> y) }
=> [44, 33, 29, 10]

>> a.sort { |x, y| (x % 10) <=> (y % 10) }
=> [10, 33, 44, 29]

Exemple Ruby 4.41 Comparaison et tri de Cours via les sigles.

$ cat cours -bis.rb
require_relative ’cours’

class Cours
include Comparable

def <=>(autre)
sigle <=> autre.sigle

end
end

if $0 == __FILE__
D e f i n i t i o n de q u e l q u e s c o u r s .

inf1120 = Cours.new(:INF1120 , ’Programmation I’)
inf1130 = Cours.new(:INF1130 , ’Maths pour informaticien ’)
inf2120 = Cours.new(:INF2120 , ’Programmation II’, inf1120)
inf3105 = Cours.new(:INF3105 , ’Str. de don.’, inf1130 , inf2120)

cours = [inf3105 , inf1120 , inf2120 , inf1130]

Q u e l q u e s e x p r e s s i o n s

puts inf3105 < inf1120
puts inf2120 >= inf1130
cours.sort.each { |c| puts c }

end

$ ruby cours -bis.rb
false
true
< INF1120 ’Programmation I’ () >
< INF1130 ’Maths pour informaticien ’ () >
< INF2120 ’Programmation II’ (INF1120) >
< INF3105 ’Str. de don.’ (INF1130 INF2120) >

Que fait la méthode suivante? Quel nom plus significatif
pourrait-on lui donner?
class Array

def mystere(p)
reduce([[], [], []]) do |res , x|

res[1 + (x <=> p)] << x

res
end

end
end

Exercice 4.8: Méthode mystere sur un Array.

4.18 Itérateurs définis par le program-
meur

Exemple Ruby 4.42 Une classe (simplifiée) pour des Ensembles.

class Ensemble
include Enumerable

E n s e m b l e i n i t i a l e m e n t v i d e (s a n s e l e m e n t).

def initialize
@elements = []

end

A j o u t d ’ un e l e m e n t , s a u f si d e j a p r e s e n t !

def <<(x)
@elements << x unless contient? x

self
end

def each
@elements.each do |x|

yield(x)
end

end

def cardinalite
count

end

def contient ?(x)
include? x

end

def somme(val_initiale = 0)
reduce(val_initiale) { |s, x| s + x }

end

def produit(val_initiale = 1)
reduce(val_initiale) { |s, x| s * x }

end

def to_s
"{ " << map { |x| x.to_s }.join(", ") << " }"

end
end

Pourquoi la méthode << retourne-t-elle self?
Que se passe-t-il si on omet self?
Exercice 4.9: Pourquoi la méthode << retourne-t-elle self?

alias :cardinalite :count
alias :contient? :include?

Exemple Ruby 4.43 Quelques expressions utilisant un objet Ensemble.

?> # C r e e un e n s e m b l e a v e c d i v e r s e l e m e n t s .

?> ens = Ensemble.new << 1 << 5 << 3

=> #<Ensemble :0 x000000023c9298 @elements =[1, 5, 3]>
>> ens.to_s
=> "{ 1, 5, 3 }"

?> # L ’ o p e r a t i o n < < m o d i f i e l ’ o b j e t .

?> ens << 2

=> #<Ensemble :0 x000000023c9298 @elements =[1, 5, 3, 2]>
>> ens.to_s
=> "{ 1, 5, 3, 2 }"

?> # A p p e l s a d i v e r s e s m e t h o d e s d i r e c t e m e n t d e f i n i e s p a r E n s e m b l e .

?> ens.contient? 10
=> false
>> ens.contient? 2
=> true

>> ens.somme
=> 11
>> ens.somme (33)
=> 44

>> ens.produit
=> 30

>?> # A p p e l s a d e s m e t h o d e s d e f i n i e s p a r E n u m e r a b l e .

>> ens.to_s
=> "{ 1, 5, 3, 2 }"

?> ens.map { |x| x * 10 }
=> [10, 50, 30, 20]

>> ens.reject { |x| x.even? }
=> [1, 5, 3]

>> ens.find { |x| x >= 2 }
=> 5

Remarque : Suppose que la méthode suivante est
définie dans Ensemble :

Supposons que dans la classe Array, on veuille définir les
méthodes map et select, et ce utilisant each ou each_index.
Quel code faudrait-il écrire?
class Array

def map
...

end

def select
...

end
end

Remarque : Conceptuellement, dans la vraie classe Array,
ces méthodes sont disponibles simplement parce que la classe
Array inclut le module Enumerable. En pratique, la mise
en oeuvre de ces méthodes pour la classe Array est faite de
façon spécifique à cette classe, pour des raisons d’efficacité
— notamment, méthodes écrites en C dans Ruby/MRI.

Exercice 4.10: Mises en oeuvre de map et select.

4.19 Expressions régulières et pattern-
matching

4.19.1 Les caractères spéciaux

\ Supprime la signification spéciale du caractère qui suit
. Un caractère arbitraire
Répétitions
* 0, 1 ou plusieurs occurrences du motif qui précède
? 0 ou 1 occurrence du motif qui précède
+ 1 ou plusieurs occurrences du motif qui précède
{n} Exactement n occurrences du motif qui précède
{n,} Au moins n occurrences du motif qui précède
{,n} Au plus n occurrences du motif qui précède
{n,m} De n à m occurrences du motif qui précède
Ancrages
^ Début de la ligne
$ Fin de la ligne
Classes de caractères
[...] Un caractère qui fait partie de la classe
[^...] Un caractère qui ne fait pas partie de la classe
\d Un nombre décimal
\D Tout sauf un nombre décimal
\s Un espace blanc (espace, tabulation, saut de ligne, etc.)
\S Tout sauf un espace blanc
\w Un caractère alphanumérique = a-zA-Z0-9_
\W Tout sauf un caractère alphanumérique
Autres caractères spéciaux
m1|m2 Choix entre motif m1 ou motif m2

(...) Création d’un groupe et d’une référence au groupe matché
\b Une frontière de mot
\A Le début de la chaine
\z La toute fin de la chaine
\Z La fin de la chaine (ignore le saut de ligne qui suit)

Tableau 4.2: Les principaux caractères spéciaux utilisés
dans les expressions régulières.

4.19.2 Les expressions régulières et la mé-
thode «=˜»

Exemple Ruby 4.44 Une expression régulière est un objet de classe Regexp.

>> # E x e m p l e s d e b a s e .

>> /ab.*zz$/.class
=> Regexp

>> re = /ab.*zz$/
=> /ab.*zz$/
>> re.class
=> Regexp

>> re = Regexp.new("ab.*zz$")
=> /ab.*zz$/
>> re.class
=> Regexp

A u t r e f a c o n .

>> re = %r{ab.*zz$}
=> /ab.*zz$/

Exemple Ruby 4.45 Une expression régulière peut être utilisée dans une opération
de pattern-matching avec «=˜».

>> # E x e m p l e s d e b a s e (s u i t e) .

>> re = Regexp.new("ab.*zz$")
=> /ab.*zz$/

>> re =~ "abcdzz00"
=> nil

>> re =~ "abcdzz"
=> 0

>> re.=~("abcdzz")
=> 0

>> re =~ ".... abcdzz"
=> 4

>> ".... abcdzz" =~ re
=> 4

>> puts "Ca matche" if re =~ ".... abcdzz"
Ca matche
=> nil

>> re !~ "abcdzz00"
=> true

>> re !~ "abcdzz"
=> false

L’opérateur =˜ est une méthode de la classe
Regexp, mais les appels suivants sont équivalents :

• re =~ ch
• re.=~(ch)
• re.=~ ch
• ch =~ re

4.19.3 Quelques caractères spéciaux addi-
tionnels et quelques options

Exemple Ruby 4.46 Autres caractères spéciaux des motifs et options.

>> # L ’ o p t i o n i p e r m e t d ’ i g n o r e r l a c a s s e .

>> /bc/ =~ "ABCD"
=> nil

>> /bc/i =~ "ABCD"
=> 1

>> # U n " . " * n e m a t c h e p a s * u n s a u t d e l i g n e . . .

s a u f a v e c l ’ o p t i o n m .

U n \ s m a t c h e u n s a u t d e l i g n e .

>> /z.abc/ =~ "xyz\nabc"
=> nil

>> /z.abc/m =~ "xyz\nabc"
=> 2

>> /z\sabc/ =~ "xyz\nabc"
=> 2

Exemple Ruby 4.47 L’option «x» permet de mieux formater des expressions
régulières complexes.

>> motif = /(#{CODE_REG }) # Le c o d e r e g i o n a l

- # Un t i r e t

(#{TEL}) # Le n u m e r o de t e l .

/x
=> /((?-mix:\d{3})) # Le c o d e r e g i o n a l

- # Un t i r e t

((?-mix:\d{3}-\d{4})) # Le n u m e r o de t e l .

/x

>> motif.match "Tel.: 514 -987 -3000 ext. 8213"
=> #<MatchData "514 -987 -3000" 1:"514" 2:"987 -3000">

Exemple Ruby 4.48 Début/fin de chaine vs. début/fin de ligne.

>> # D e b u t d e l i g n e v s . d e b u t d e c h a i n e .

>> /^abc/ =~ "xxx\nabc\n"
=> 4

>> /\Aabc/ =~ "xxx\nabc\n"
=> nil

>> # F i n d e l i g n e v s . f i n d e c h a i n e .

>> /abc$/ =~ "xxx\nabc\n"
=> 4

>> /abc\z/ =~ "xxx\nabc\n"
=> nil

>> /abc\n\z/ =~ "xxx\nabc\n"
=> 4

>> /abc\Z/ =~ "xxx\nabc\n"
=> 4

Exemple Ruby 4.49 Autres exemples de groupes : avec vs. sans capture.

>> /(ab)(cd)(ef)/ =~ "abcdef"
=> 0

>> puts $1, $2 , $3
ab
cd
ef
=> nil

>> /(ab)(?:cd)(ef)/ =~ "abcdef"
=> 0

>> puts $1, $2 , $3
ab
ef

=> nil

>> /(ab)(?#cd)(ef)/ =~ "abcdef"
=> nil

>> /(ab)(?#cd)(ef)/ =~ "abef"
=> 0

Exemple Ruby 4.50 Autres exemples de pattern-matching : matche vorace vs.
paresseux.

>> /ab(c.*)d/ =~ "abcccddccddccd"
=> 0

>> $1
=> "cccddccddcc"

>> /ab(c.*?)d/ =~ "abcccddccddccd"
=> 0

>> $1
=> "ccc"

Exemple Ruby 4.51 Autre caractère spécial : frontière de mot.

>> /abc/ =~ "xabc"
=> 1

>> /\babc/ =~ "xabc"
=> nil

>> /\babc/ =~ "x abc"
=> 2

4.19.4 La classe MatchData

Exemple Ruby 4.52 Les méthodes d’un objet MatchData, objet retourné par
l’opération Regexp#match.

>> # L e s o b j e t s M a t c h D a t a .

>> CODE_REG = /\d{3}/
=> /\d{3}/
>> TEL = /\d{3}-\d{4}/
=> /\d{3}-\d{4}/

>> m = /(#{CODE_REG })-(#{TEL})/
.match "FOO"

=> nil

>> m = /(#{CODE_REG })-(#{TEL})/
.match "Tel.: 514 -987 -3000 ext. 8213"

=> #<MatchData "514 -987 -3000" 1:"514" 2:"987 -3000">

>> m[0.. -1]
=> ["514 -987 -3000", "514", "987 -3000"]

>> m.begin (0)..m.end(0)
=> 6..18
>> m.begin (1)..m.end(1)
=> 6..9
>> m.begin (2)..m.end(2)
=> 10..18

>> m.pre_match
=> "Tel.: "

>> m.post_match
=> " ext. 8213"

Exemple Ruby 4.53 Les groupes avec noms et les variables spéciales «$i»
définies par la méthode «=˜».

D e s g r o u p e s a v e c n o m s e x p l i c i t e s .

>> m = /(?<code_reg >#{CODE_REG })-(?<tel >#{TEL })/.
match "Tel.: 514 -987 -3000 ext. 8213"

=> #<MatchData "514 -987 -3000" code_reg:"514"
tel:"987 -3000">

>> m[: code_reg]
=> "514"

>> m.begin(: code_reg)
=> 6

>> m[:tel]
=> "987 -3000"

>> m.end(:tel)
=> 18

L e s v a r i a b l e s s p e c i a l e s $ 1 , $ 2 , e t c .

i n d i q u e n t l e s g r o u p e s c a p t u r e s .

>> if /(#{CODE_REG })-(#{TEL})/ =~
"Tel.: 514 -987 -3000 ext. 8213"

puts "code reg. = #{$1}; tel. = #{$2}"
end

code reg. = 514; tel. = 987 -3000
=> nil

Qu’est-ce qui sera imprimé par les instructions p suivantes :

code_permanent = /(\w{4}) # N O M P

(\d{2}) # A n n e e

(\d{2}) # M o i s

(\d{2}) # J o u r

([^\D]{2})
/x

m = code_permanent
.match "CP: DEFG11229988."

p m[1]
p m[5]
p m.pre_match
p m.post_match

Exercice 4.11: Objet MatchData.

4.20 Interactions avec l’environnement

4.20.1 Arguments du programme

Exemple Ruby 4.54 Les arguments d’un programme Ruby et les variables
d’environnement.

$ cat argv.rb
! / u s r / b i n / e n v r u b y

i = 0
while arg = ARGV.shift do

puts "ARGV [#{i}] = ’#{arg}’ (#{ arg.class })"
i += 1

end

puts "ENV[’FOO ’] = ’#{ENV[’FOO ’]}’"
ENV[’FOO’] = ’FOO argv.rb’
puts "-----"

$ echo $FOO

$./argv.rb
ENV[’FOO ’] = ’’

$./argv.rb 1234 ’abc "" def ’ abc def "’"
ARGV [0] = ’1234’ (String)
ARGV [1] = ’abc "" def ’ (String)
ARGV [2] = ’abc ’ (String)
ARGV [3] = ’def ’ (String)
ARGV [4] = ’’’ (String)
ENV[’FOO ’] = ’’

$ export FOO=xyz; ./argv.rb def; echo $FOO
ARGV [0] = ’def ’ (String)
ENV[’FOO ’] = ’xyz ’

xyz

$ FOO =123 ./argv.rb def; echo $FOO
ARGV [0] = ’def ’ (String)
ENV[’FOO ’] = ’123’

xyz

Soit le script suivant :

$ cat argv2.rb
! / u s r / b i n / e n v r u b y

ENV[’NB’].to_i.times do
puts ARGV [0] + ARGV [1]

end

Qu’est-ce qui sera imprimé par les appels suivants :

a .

NB=3 ./argv2.rb 3 8

b .

NB=2 ./argv2.rb [1, 2] [3]

c .

unset NB; ./argv2.rb [1009 , 229342] [334]

Exercice 4.12: Utilisation de ARGV et ENV.

4.20.2 Écriture sur le flux de sortie stan-
dard : printf, puts, print et p

Exemple Ruby 4.55 Exemples d’utilisation de printf, sprintf et print.

>> printf "%d\n", "123"
123
=> nil

>> STDOUT.printf "%s\n", "123"
123
=> nil

>> printf "%d\n", "abc"
ArgumentError: invalid value for Integer (): "abc"

[...]

>> printf "%s\n", "abc"
abc
=> nil

>> printf "%d\n", [10, 20]
TypeError: can’t convert Array into Integer

[...]

>> printf "%s\n", [10, 20]
[10, 20]
=> nil

O n p e u t a u s s i u t i l i s e r u n f o r m a t p o u r

g e n e r e r u n e c h a i n e , s a n s e f f e t

s u r l e f l u x d e s o r t i e .

>> res = sprintf "%d\n", 123
=> "123\n"

>> res
=> "123\n"

>> print 123
123=> nil
>> print "123"
123=> nil
>> print "123\n"
123
=> nil

Exemple Ruby 4.56 Écriture d’un entier ou d’une chaine simple.

$ cat print -et -al.rb
!/ u s r / b i n / e n v r u b y

def imprimer(methode , *valeurs)
puts "*** Avec #{ methode }:"
valeurs.each do |x|

send methode , x
puts "..."

end
end

imprimer(:puts , 123, "123")
puts
imprimer(:p, 123, "123")

$./print -et-al.rb
*** Avec puts:
123
...
123
...

*** Avec p:
123
...
"123"
...

Exemple Ruby 4.57 Écriture d’un tableau d’entiers ou un tableau de chaines.

$ cat print -et -al.rb
!/ u s r / b i n / e n v r u b y

def imprimer(methode , *valeurs)
puts "*** Avec #{ methode }:"
valeurs.each do |x|

send methode , x
puts "..."

end
end

imprimer(:puts , [123, 456], ["123", "456"])
puts
imprimer(:p, [123, 456], ["123", "456"])

$./print -et-al.rb
*** Avec puts:
123
456
...
123
456
...

*** Avec p:
[123, 456]
...
["123", "456"]
...

Exemple Ruby 4.58 Écriture d’un objet qui n’a pas de méthodes to_s et
inspect.

$ cat print -et -al.rb
!/ u s r / b i n / e n v r u b y

def imprimer(methode , *valeurs)
puts "*** Avec #{ methode }:"
valeurs.each do |x|

send methode , x
puts "..."

end
end

class Bar
def initialize(val); @val = val; end

end

imprimer(:puts , Bar.new (10))
puts
imprimer(:p, Bar.new (10))

$./print -et-al.rb
*** Avec puts:
#<Bar:0 x000000015022a0 >
...

*** Avec p:
#<Bar:0 x00000001501f80 @val=10>
...

Exemple Ruby 4.59 Écriture d’un objet qui a des méthodes to_s et inspect.

$ cat print -et -al.rb
!/ u s r / b i n / e n v r u b y

def imprimer(methode , *valeurs)
puts "*** Avec #{ methode }:"
valeurs.each do |x|

send methode , x
puts "..."

end
end

class Foo
def initialize(val); @val = val; end

def to_s; "#{@val}"; end

def inspect; "#<Foo: val=#{ @val}>"; end
end

imprimer(:puts , Foo.new (10))
puts
imprimer(:p, Foo.new (10))

$./print -et-al.rb
*** Avec puts:
10
...

*** Avec p:
#<Foo: val=10>
...

4.20.3 Manipulation de fichiers

Exemple Ruby 4.60 Différentes façon de lire et d’afficher sur stdout le contenu
d’un fichier texte.

$ cat cat.rb
!/ u s r / b i n / e n v r u b y

nom_fichier = ARGV [0]

File.open(nom_fichier , "r") do |fich|
fich.each_line do |ligne|

puts ligne
end

end

$ cat foo.txt
abc def
123 456

xxx
...

$./cat.rb foo.txt
abc def
123 456

xxx
...

Exemple Ruby 4.60 Différentes façon de lire et d’afficher sur stdout le contenu
d’un fichier texte.

$ cat cat.rb
!/ u s r / b i n / e n v r u b y

nom_fichier = ARGV [0]

fich = File.open(nom_fichier , "r")

fich.each_line do |ligne|
puts ligne

end

fich.close

$ cat foo.txt
abc def
123 456

xxx
...

$./cat.rb foo.txt
abc def
123 456

xxx
...

Exemple Ruby 4.60 Différentes façon de lire et d’afficher sur stdout le contenu
d’un fichier texte.

$ cat cat.rb
!/ u s r / b i n / e n v r u b y

nom_fichier = ARGV [0]

IO.readlines(nom_fichier).each do |ligne|
puts ligne

end

$ cat foo.txt
abc def
123 456

xxx
...

$./cat.rb foo.txt
abc def
123 456

xxx
...

Exemple Ruby 4.60 Différentes façon de lire et d’afficher sur stdout le contenu
d’un fichier texte.

$ cat cat.rb
!/ u s r / b i n / e n v r u b y

nom_fichier = ARGV [0]

puts IO.readlines(nom_fichier)

$ cat foo.txt
abc def
123 456

xxx
...

$./cat.rb foo.txt
abc def
123 456

xxx
...

Figure 4.5: Modes d’ouverture des fichiers (source : http:
//ruby-doc.org/core-2.0.0/IO.html).

http://ruby-doc.org/core-2.0.0/IO.html
http://ruby-doc.org/core-2.0.0/IO.html

Exemple Ruby 4.61 Différentes façon de lire et d’afficher sur stdout le con-
tenu d’un fichier texte, dont une façon qui permet de recevoir les données par
l’intermédiaire du flux standard d’entrée.

$ cat cat.rb
!/ u s r / b i n / e n v r u b y

nom_fichier = ARGV [0]

puts (nom_fichier ? IO : STDIN). readlines nom_fichier

$ cat foo.txt
abc def
123 456

xxx
...

$./cat.rb foo.txt
abc def
123 456

xxx
...

$ cat foo.txt | ./cat.rb
abc def
123 456

xxx
...

4.20.4 Exécution de commandes

Exemple Ruby 4.62 Exécution de commandes externes avec backticks ou %x{...}

>> # E x e c u t i o n a v e c b a c k t i c k s .

>> ext = ’rb’
=> "rb"

>> puts `ls [e]*.#{ext}`
ensemble.rb
ensemble_spec.rb
entrelacement.rb
=> nil

>> "#{$?}"
=> "pid 29829 exit 0"

>> # E x e c u t i o n a v e c % x { . . . } .

>> puts %x{ ls [e]*.#{ext} }
ensemble.rb
ensemble_spec.rb
entrelacement.rb
=> nil

>> $?
=> #<Process :: Status: pid 30019 exit 0>

>> # E m i s s i o n s u r s t d e r r vs . s t d o u t

>> %x{ ls www_xx_z }
ls: impossible d’accéder à www_xx_z:

Aucun fichier ou dossier de ce type
=> ""

>> "#$?"
=> "pid 29831 exit 2"

Figure 4.6: Deux points de vue sur les flux associés à un
processus.

Exemple Ruby 4.63 Exécution de commandes externes avec Open3.popen3.

$ cat commandes2.rb
require ’open3’
Open3.popen3("wc -lw") do |stdin , stdout , stderr|

stdin.puts ["abc def", "", "1 2 3"]
stdin.close

puts "--stdout --"
puts stdout.readlines
puts "--stderr --"
puts stderr.readlines
puts

end

$./ commandes2.rb
--stdout --

3 5
--stderr --

Exemple Ruby 4.64 Exécution de commandes externes avec Open3.popen3.

$ cat commandes3.rb
require ’open3’
Open3.popen3("wc -lw xsfdf.txt") do |_, out , err|

puts "--out --"
puts out.readlines
puts "--err --"
puts err.readlines
puts

end

$./ commandes3.rb
--out --
--err --
wc: xsfdf.txt: Aucun fichier ou dossier de ce type

4.21 Traitement des exceptions

4.21.1 Classe Exception et sous-classes stan-
dards

NoMemoryError
ScriptError

LoadError
NotImplementedError
SyntaxError

SignalException
Interrupt

StandardError -- default for rescue
ArgumentError
IndexError

StopIteration
IOError

EOFError
LocalJumpError
NameError

NoMethodError
RangeError

FloatDomainError
RegexpError
RuntimeError -- default for raise
SecurityError
SystemCallError

Errno::*
SystemStackError
ThreadError
TypeError
ZeroDivisionError

SystemExit
fatal -- impossible to rescue

Figure 4.7: Hiérarchie des classes/sous-classes standards
pour les exceptions (source : http://ruby-doc.org/
core-2.1.1/Exception.html).

http://ruby-doc.org/core-2.1.1/Exception.html
http://ruby-doc.org/core-2.1.1/Exception.html

4.21.2 Attraper et traiter une exception

Exemple Ruby 4.65 Une méthode div qui attrape et traite diverses exceptions.

>> def div(x, y)
begin

z = x / y
rescue ZeroDivisionError => e

puts "*** Division par 0 (#{e})"
p e.backtrace
nil

rescue Exception => e
puts "*** Erreur = ’#{e.inspect}’"

end
end

=> :div

>> div 3, 0
*** Division par 0 (divided by 0)
["(irb):4:in ’/’",
"(irb):4:in ’div’", "(irb):14: in ’irb_binding ’",
"/home/tremblay /.rvm/rubies/ruby -2.1.4/ lib/ruby /2.1.0/ irb/workspace.rb:86:in ’eval’",
...,
"/home/tremblay /.rvm/rubies/ruby -2.1.4/ bin/irb :11:in ’<main >’"]

=> nil

>> div 3, nil
*** Erreur = ’#<TypeError: nil can’t be coerced into Fixnum>’
=> nil

>> div nil , 3
*** Erreur = ’#<NoMethodError: undefined method ’/’ for nil:NilClass>’
=> nil

Exemple Ruby 4.66 Une méthode traiter_fichier qui attrape et traite des
exceptions et qui s’assure de restaurer le système dans un bon état, qu’une exception
soit signalée ou non — dans ce cas-ci, en s’assurant de fermer le descripteur du fichier
ayant été ouvert.

>> def traiter_fichier(fich)
f = File.open(fich)
begin

traiter_contenu_fichier(f.readlines)
puts "+++ Traitement termine"

rescue Exception => e
puts "*** Erreur = ’#{e.inspect}’"

ensure
f.close

end

f.inspect # P o u r v o i r l ’ e t a t f i n a l de f .

end
=> :traiter_fichier

>> traiter_fichier("foo.txt")
+++ Traitement termine
=> "#<File:foo.txt (closed)>"

>> traiter_fichier("bar.txt")
*** Erreur = ’#<RuntimeError: Erreur dans traiter_contenu_fichier >’
=> "#<File:bar.txt (closed)>"

Exemple Ruby 4.67 La méthode File.open, lorsqu’appelée avec un bloc, assure
que le fichier sera fermé, qu’une exception survienne ou pas.

>> def traiter_fichier(fich)
le_f = nil
File.open(fich) do |f|

le_f = f
begin

traiter_contenu_fichier(f.readlines)
puts "+++ Traitement termine"

rescue Exception => e
puts "*** Erreur = ’#{e.inspect}’"

end
end
le_f.inspect

end
=> :traiter_fichier

>> traiter_fichier("bar.txt")
*** Erreur = ’#<RuntimeError: Erreur dans traiter_contenu_fichier >’
=> "#<File:bar.txt (closed)>"

4.21.3 Signaler une exception

Exemple Ruby 4.68 Exemples illustrant l’instruction fail, appelée avec 0, 1 ou
2 arguments.

>> class MonException < RuntimeError
def initialize(msg = nil)

super
end

end
=> :initialize

>> def executer
begin

yield
rescue Exception => e

"classe = #{e.class}; message = ’#{e.message}’"
end

end
=> :executer

>> executer { fail }
=> "classe = RuntimeError; message = ’’"

>> executer { fail "Une erreur!" }
=> "classe = RuntimeError; message = ’Une erreur!’"

>> executer { fail MonException }
=> "classe = MonException; message = ’MonException ’"

>> executer { fail MonException , "Probleme !!" }
=> "classe = MonException; message = ’Probleme!!’"

Exemple Ruby 4.69 Exemples illustrant l’instruction raise utilisée pour resig-
naler une exception.

>> def executer
begin

yield
rescue Exception => e

puts "classe = #{e.class}; message = ’#{e.message}’"
raise

end
end

=> :executer

>> executer { fail MonException , "Probleme !!" }
classe = MonException; message = ’Probleme !!’
MonException: Probleme !!

from (irb):16:in ’block in irb_binding ’
from (irb):9:in ’executer ’
from (irb):16
from /home/tremblay /.rvm/rubies/ruby -2.1.4/ bin/irb :11:in ’<main >’

4.22 Autres éléments de Ruby

4.22.1 L’opérateur préfixe «*»

Exemple Ruby 4.70 Utilisation de l’opérateur «*» (splat) devant un objet —
Range, scalaire ou Range — dans une expression.

>> # L ’ o p e r a t e u r " s p l a t " (*) d e v a n t un t a b l e a u " e n l e v e " un n i v e a u de

t a b l e a u , i . e . , i n t e g r e d i r e c t e m e n t l e s e l e m e n t s du t a b l e a u p l u t o t

q u e le t a b l e a u lui - m e m e .

>> a = [98, 99]
=> [98, 99]

>> [1, [10, 20], a, 1000]
=> [1, [10, 20], [98, 99], 1000]

>> [1, *[10, 20], *a, 1000]
=> [1, 10, 20, 98, 99, 1000]

>> # L ’ o p e r a t e u r s p l a t (*) d e v a n t un s c a l a i r e ou un R a n g e g e n e r e un

t a b l e a u a v e c l ’ e l e m e n t ou l e s e l e m e n t s i n d i q u e s . . . m a i s p a s

n ’ i m p o r t e ou .

>> a = *10
=> [10]

>> a = *(1..10)
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> (1..10). to_a
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

M a i s . . .

>> *(1..10)
SyntaxError: (irb):41: syntax error , unexpected ’\n’,

expecting :: or ’[’ or ’.’
...

>> *10
SyntaxError: (irb):33: syntax error , unexpected ’\n’,

expecting :: or ’[’ or ’.’
...

Exemple Ruby 4.71 Utilisation de l’opérateur «*» du coté gauche d’une affecta-
tion parallèle (multiple).

>> # D a n s la p a r t i e g a u c h e d ’ u n e a f f e c t a t i o n p a r a l l e l e , un * p e r m e t de

< < d e c o n s t r u i r e > > un t a b l e a u . D a n s ce cas , la v a r i a b l e

p r e f i x e e a v e c * d o i t e t r e u n i q u e et va d e n o t e r un sous - t a b l e a u

d ’ e l e m e n t s .

>> a, b, c = [10, 20, 30, 40]
=> [10, 20, 30, 40]

>> puts "a = #{a}; b = #{b}; c = #{c}"
a = 10; b = 20; c = 30
=> nil

>> a, *b, c = [10, 20, 30, 40]
=> [10, 20, 30, 40]

>> puts "a = #{a}; b = #{b}; c = #{c}"
a = 10; b = [20, 30]; c = 40
=> nil

>> premier , *derniers = [10, 20, 30]
=> [10, 20, 30]

>> puts "premier = #{ premier }; derniers = #{ derniers}"
premier = 10; derniers = [20, 30]
=> nil

>> *premiers , dernier = [10, 20, 30]
=> [10, 20, 30]

>> puts "premiers = #{ premiers }; dernier = #{ dernier}"
premiers = [10, 20]; dernier = 30
=> nil

Exemple Ruby 4.72 Utilisation de «*» dans la spécification de paramètres de
méthodes : l’effet est semblable à des affectations parallèles.

>> # L ’ u t i l i s a t i o n de * s ’ a p p l i q u e a u s s i a u x p a r a m e t r e s

f o r m e l s d ’ u n e m e t h o d e , a i n s i qu ’ a u x a r g u m e n t s e f f e c t i f s

(e x p r e s s i o n s p a s s e e s en a r g u m e n t).

>> def foo(x, *args)
puts "x = #{x}"
args.each_index { |k| puts "args [#{k}] = #{args[k]}" }

end
=> :foo

>> foo(10)
x = 10
=> []

>> foo(10, 20)
x = 10
args [0] = 20
=> [20]

>> foo(10, 20, 30)
x = 10
args [0] = 20
args [1] = 30
=> [20, 30]

>> foo([10, 20, 30])
x = [10, 20, 30]
=> []

>> foo(*[10, 20, 30])
x = 10
args [0] = 20
args [1] = 30
=> [20, 30]

4.22.2 L’opérateur préfixe «&» pour la ma-
nipulation de blocs

Exemple Ruby 4.73 Utilisation de l’opérateur «&» pour rendre explicite un bloc
comme paramètre d’une méthode.

>> # L ’ o p e r a t e u r p r e f i x e & u t i l i s e d e v a n t le d e r n i e r p a r a m e t r e

r e n d e x p l i c i t e le b l o c t r a n s m i s a l ’ a p p e l de la m e t h o d e .

Ce p a r a m e t r e e s t a l o r s un o b j e t P r o c p o u v a n t

e t r e e x e c u t e a v e c c a l l .

>> def call_yield(x, &bloc)
return x unless block_given?

[bloc.class , bloc.call(x), yield(x)]
end

=> :call_yield

>> call_yield(99)
=> 99

>> call_yield(99) { |x| x + 10 }
=> [Proc , 109, 109]

Exemple Ruby 4.74 Utilisation de l’opérateur «&» pour transformer un objet
lambda ou Symbole en bloc.

>> # L ’ o p e r a t e u r p r e f i x e & d e v a n t u n e l a m b d a e x p r e s s i o n

t r a n s f o r m e l ’ o b j e t P r o c en un b l o c .

Ce b l o c p e u t a l o r s t r a n s m i s e x p l i c i t e m e n t c o m m e

d e r n i e r a r g u m e n t (a r g u m e n t a d d i t i o n n e l en p l u s

d e s a r g u m e n t s n o n b l o c s e x p l i c i t e s).

>> double = lambda { |x| 2 * x }
=> #<Proc:0 x000000028b0950@(irb):24 (lambda)>

>> call_yield(2) { |x| 2 * x }
=> [Proc , 4, 4]

>> call_yield(2) double
SyntaxError: (irb):26: syntax error , unexpected tIDENTIFIER , expecting end-of-input

...

>> call_yield(2) &double
TypeError: Proc can’t be coerced into Fixnum

...

>> call_yield(2, &double)
=> [Proc , 4, 4]

>> # C e t t e t r a n s f o r m a t i o n s ’ a p p l i q u e m e m e l o r s q u e le b l o c

e s t i m p l i c i t e .

Et e l l e s ’ a p p l i q u e a u s s i a u x s y m b o l e s ,

v i a un a p p e l i m p l i c i t e a t o _ p r o c .

>> def yield_un_arg(x)
yield(x)

end
=> :yield_un_arg

>> yield_un_arg(24, &double)
=> 48

>> yield_un_arg(24, &:even?)
=> true

>> # : s . t o _ p r o c == P r o c . n e w { | o | o . s } (. . . ou p r e s q u e)

>> yield_un_arg(24, &:even?. to_proc)
=> true

>> yield_un_arg(24, &:-)
ArgumentError: wrong number of arguments (0 for 1)

...

>> yield_un_arg(24, &:-@) # V o i r s e c t i o n s u i v a n t e .

=> -24

4.22.3 Les opérateurs (préfixes) unaires

Exemple Ruby 4.75 Opérateurs (préfixes) unaires définis par le programmeur.

>> class Foo
def +(autre)

puts "self = #{self}; autre = #{ autre}"
end

def +@
puts "self = #{self}"

end
end

=> :+@

>> foo = Foo.new
=> #<Foo:0 x000000019910c8 >

>> foo + 10
self = #<Foo:0 x000000019910c8 >; autre = 10
=> nil

>> + foo
self = #<Foo:0 x000000019910c8 >
=> nil

4.22.4 Un mini irb en une seule ligne

$ ruby -n -e ’p eval($_)’
10 + 30
40
:a.class
Symbol
puts "10"
10
nil
ˆD

4.22.5 La méthode tap

tap {|x| ...} -> obj

Yields self to the block , and the return self. The primary purpose
of this method is to "tap into" a method chain , in order to perform
operations on intermediate results within the chain.

class Object
def tap

yield self
self

end
end

$ cat tap.rb

p (1..10)
.tap { |x| puts "Original: #{x}" }
.to_a
.tap { |x| puts "Array: #{x}" }
.select { |x| x.even? }
.tap { |x| puts "Paires: #{x}" }
.map { |x| x * x }
.tap { |x| puts "Carres: #{x}" }

$ ruby tap.rb
Original: 1..10
Array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Paires: [2, 4, 6, 8, 10]
Carres: [4, 16, 36, 64, 100]
[4, 16, 36, 64, 100]

4.A Installation de Ruby sur votre
machine

1. Obtenir la clé pour rvm et obtenir rvm :
$ gpg --keyserver hkp:// keys.gnupg.net\

--recv -keys 409 B6B1796C275462A1703113804BB82D39DC0E3
$ curl -sSL https :// get.rvm.io | bash -s stable

2. Activer les fonctions associées à rvm :
$ source ~/.rvm/scripts/rvm

3. Pour la programmation parallèle avec la biblio-
thèque PRuby (cours INF5171/INF7235), il faut
installer jruby — rvm list permet de vérifier
qu’il est bien installé, puis il faut ensuite in-
staller le gem pruby :
$ rvm install jruby -1.7

$ rvm list

$ wget http ://www.labunix.uqam.ca/~ tremblay/INF7235/pruby -0.3.0. gem

$ gem install pruby -0.3.0. gem

Important : Il ne faut pas installer jruby-9
— pruby n’a pas encore été adapté pour cette
version.

4. Installer le gem bundler :
$ gem install bundler

4.B Le cadre de tests unitaires MiniTest

4.B.1 Tests unitaires et cadres de tests
Niveaux de tests

Différents niveaux de tests :

• Tests unitaires

• Tests d’intégration

• Tests de système

• Tests d’acceptation

Dans ce qui suit : tests unitaires.

Pratique professionnelle et tests

«code source = programme + tests»

Approches agiles et «développement dirigé par les
tests» :

• Les tests doivent être écrits avant le code!
• Never write a line of functional code with-

out a broken test case. (K. Beck)

Cadres de tests

Il faut que les tests puissent être exécutés fréquem-
ment et de façon automatique

Outils qui permettent d’automatiser l’exécution des
tests unitaires = cadres de tests

Caractéristique= on utilise des assertions :
assertEquals(expectedResult , value)
assertEquals(expectedResult , value , precision)
assertTrue(booleanExpression)
assertNotNull(reference)
etc.

Donc : aucun résultat n’est produit si le test ne
détecte pas d’erreur.

4.B.2 Le cadre de tests MiniTest
Test dans le style «JUnit» :

class TestFoo < MiniTest ::Unit:: TestCase
def setup

@foo = Foo.new
end

def test_bar_est_initialement_0
assert_equal 0, @foo.bar

end
...

end

Test dans le style «RSpec» :
describe Foo do

describe "#bar" do
before do

@foo = Foo.new
end

it "retourne une taille nulle lorsque cree" do
@foo.bar.must_equal 0

end
...

end
...

end

4.B.3 Des spécifications MiniTest pour la
classe Ensemble

Exemple Ruby 4.76 Une suite de tests pour la classe Ensemble (partie 1)

require ’minitest/autorun ’
require ’minitest/spec’

require_relative ’ensemble ’

describe Ensemble do
before do

@ens = Ensemble.new
end

describe ’#contient?’ do
it "retourne faux quand un element n’est pas present" do

refute @ens.contient? 10
end

it "retourne vrai apres qu’un element ait ete ajoute" do
refute @ens.contient? 10
@ens << 10
assert @ens.contient? 10

end
end

. . .

Exemple Ruby 4.77 Une suite de tests pour la classe Ensemble (partie 2)

. . .

describe ’#<<’ do
it "ajoute un element lorsque pas deja present" do

@ens << 10
assert @ens.contient? 10

end

it "laisse l’element ajoute lorsque deja present" do
@ens << 10
assert @ens.contient? 10

@ens << 10
assert @ens.contient? 10

end

it "retourne self ce qui permet de chainer des operations" do
res = @ens << 10
res.must_be_same_as @ens

end
end

. . .

Exemple Ruby 4.78 Une suite de tests pour la classe Ensemble (partie 3)

. . .

describe ’#cardinalite ’ do
it "retourne 0 lorsque vide" do

@ens.cardinalite.must_equal 0
end

it "retourne 1 lorsqu ’un seul et meme element est ajoute , 1 ou plusieurs fois" do
@ens << 1
@ens.cardinalite.must_equal 1

@ens << 1 << 1 << 1
@ens.cardinalite.must_equal 1

end

it "retourne le nombre d’elements distincts peu importe le nombre de fois ajoutes" do
@ens << 1 << 1 << 1 << 2 << 2 << 1 << 2
@ens.cardinalite.must_equal 2

end
end

end

res.must_be_same_as @ens =
assert res.equal? @ens

@ens.cardinalite.must_equal 0 =
assert @ens.cardinalite == 0
assert_equal 0, @ens.cardinalite

Exemple Ruby 4.79 Des exemples d’exécution de la suite de tests pour la classe
Ensemble.
======================
Execution ordinaire
======================

$ ruby ensemble_spec.rb
Run options: --seed 43434

Running:

........

Finished in 0.001556s, 5140.4367 runs/s, 7068.1005 assertions/s.

8 runs, 11 assertions, 0 failures, 0 errors, 0 skips

======================
Execution ’verbeuse’
======================

$ ruby ensemble_spec.rb -v
Run options: -v --seed 18033

Running:

Ensemble::#<<#test_0003_retourne self ce qui permet de chainer des operations = 0.00 s = .
Ensemble::#<<#test_0001_ajoute un element lorsque pas deja present = 0.00 s = .
Ensemble::#<<#test_0002_laisse l’element ajoute lorsque deja present = 0.00 s = .
Ensemble::#contient?#test_0001_retourne faux quand un element n’est pas present = 0.00 s = .
Ensemble::#contient?#test_0002_retourne vrai apres qu’un element ait ete ajoute = 0.00 s = .
Ensemble::#cardinalite#test_0001_retourne 0 lorsque vide = 0.00 s = .
Ensemble::#cardinalite#test_0002_retourne 1 lorsqu’un seul et meme element est ajoute,\

1 ou plusieurs fois = 0.00 s = .
Ensemble::#cardinalite#test_0003_retourne le nombre d’elements distincts peu importe\

le nombre de fois ajoutes = 0.00 s = .

Finished in 0.001686s, 4745.7382 runs/s, 6525.3900 assertions/s.

8 runs, 11 assertions, 0 failures, 0 errors, 0 skips

Exemple Ruby 4.80 Un exemple d’exécution de la suite de tests pour la classe
Ensemble avec des échecs — la méthode cardinalite retourne toujours 0.

======================
Execution avec echecs
======================
$ ruby ensemble_spec.rb
Run options: --seed 7910

Running:

...FF...

Finished in 0.001950s, 4101.7438 runs/s, 5127.1797 assertions/s.

1) Failure:
Ensemble::#cardinalite#test_0002_retourne 1 lorsqu’un seul et meme element est ajoute,\

1 ou plusieurs fois [ensemble_spec.rb:54]:
Expected: 1
Actual: 0

2) Failure:
Ensemble::#cardinalite#test_0003_retourne le nombre d’elements distincts peu importe\

le nombre de fois ajoutes [ensemble_spec.rb:62]:
Expected: 2
Actual: 0

8 runs, 10 assertions, 2 failures, 0 errors, 0 skips

Figure 4.8: La liste des expectations disponibles dans
MiniTest. Source : http://ruby-doc.org/stdlib-2.
1.0/libdoc/minitest/rdoc/MiniTest/Expectations.
html.

http://ruby-doc.org/stdlib-2.1.0/libdoc/minitest/rdoc/MiniTest/Expectations.html
http://ruby-doc.org/stdlib-2.1.0/libdoc/minitest/rdoc/MiniTest/Expectations.html
http://ruby-doc.org/stdlib-2.1.0/libdoc/minitest/rdoc/MiniTest/Expectations.html

Exemple Ruby 4.81 Quelques autres méthodes de MiniTest — dans le style avec
expectations.

gem ’minitest ’
require ’minitest/autorun ’
require ’minitest/spec’

describe Array do
let (:vide) { Array.new }

before do
@singleton_10 = Array.new << 10

end

describe ".new" do
it "cree un tableau vide lorsque sans argument" do

vide.must_be :empty?
end

end

describe "#push" do
it "ajoute un element , lequel devient inclu" do

@singleton_10.must_include 10
end

end

describe "#size" do
it "retourne 0 lorsque vide" do

vide.size.must_equal 0
end

it "retourne 0 lorsque vide (bis)" do
vide.size.must_be :==, 0

end

it "retourne > 0 lorsque non vide" do
@singleton_10.size.must_be :>, 0

end
end

describe "#to_s" do
it "retourne ’[]’ lorsque vide" do

vide.to_s
.must_equal "[]"

end

it "retourne les elements separes par des virgules" do
(vide << 10 << 20 << 30). to_s

.must_equal "[10, 20, 30]"
end

it "retourne les elements separes par des virgules (bis)" do
a = vide << 10 << 20 << 30
virgule = /\s*,\s*/

a.to_s
.must_match

/^\[\s*10#{virgule }20#{virgule }30\s*\]$/
end

end
end

4.C Règles de style Ruby

Pourquoi des conventions sur le style de program-
mation sont importantes :

• 80% of the lifetime cost of a piece of soft-
ware goes to maintenance.

• Hardly any software is maintained for its
whole life by the original author.

• Code conventions improve the readability
of the software, allowing engineers to
understand new code more quickly
and thoroughly.

http: // www. oracle. com/ technetwork/ java/ index-135089. html

http://www.oracle.com/technetwork/java/index-135089.html

Une présentation assez complète des règles spéci-
fiques à Ruby :
https://github.com/styleguide/ruby

https://github.com/styleguide/ruby

Principales règles que vous devriez respecter :

• Utilisation du snake_case vs. CamelCase :

– NomDeClasse
– NOM_DE_CONSTANTE
– nom_de_methode
– nom_de_parametre_ou_variable

• Indentation avec des (2) espaces blancs seule-
ment, pas de caractères de tabulation

• Jamais de blancs à la fin d’une ligne.

• Des blancs autour des opérateurs binaires (y
compris =), après les virgules, les deux points et
les points-virgules, autour des { et avant les }.

• Pas de blanc avant ou après [et], ou après !.

• Jamais de then pour une instruction if/unless
et jamais de parenthèses autour des con-
ditions :

N O N

if (condition) then
...

end

OK
if condition

...
end

• Pas de parenthèses si aucun argument :
def une_methode_sans_arg

...
end

def une_methode_avec_args(arg1 , ..., argk)
...

end

N O N

une_methode_sans_arg ()

OK
une_methode_sans_arg

• Opérateur ternaire ?: seulement pour une
expression sur une seule ligne.

• On utilise une garde if/unless quand il y a
une seule instruction simple/courte :

N O N

if condition
une_instr

end

OK
une_instr if condition

• On utilise unless si la condition est négative :
N O N

if !expr
...
res

end

N O N

unless expr
... si faux ...

else
... si vrai ...

end

OK
unless expr

...
res

end

OK
if expr

... si vrai ...
else

... si faux ...
end

• Pour les blocs, on utilise {...} lorsque le corps
peut s’écrire sur une seule ligne.

Autrement, on utilise do ... end.

N O N

col.map do |x| ... end

col.map { |x|
...

}

OK
col.map { |x| ... }

col.map do |x|
...

end

• On utilise return seulement pour retourner au
milieu d’une méthode :

N O N

if expr
...
return res

else
...
return autre_res

end

OK
if expr

...
res

else
...
autre_res

end

N O N

def m_rec(...)
if expr

return res_base
else

...
return res_rec

end
end

OK
def m_rec(...)

return res_base if expr

...
res_rec

end

• Dans une classe C, on utilise def self.m pour
définir une méthode de classe m.

• Pour les objets de classe Hash, on utilise des
Symbols comme clés :

hash = {
:cle1 => defn1 ,
:cle2 => defn2 ,
...
:clek => defnk

}

Quelques remarques additionnelles concernant les
exemples :

• Des espaces sont mis autour des parenthèses des
définitions de méthodes :

S t y l e s u g g e r e d a n s le g u i d e .

def methode(a, b, c)
...

end

S t y l e d a n s le m a t e r i e l de c o u r s

def methode(a, b, c)
...

end

Quelques règles additionnelles

Les règles qui suivent sont basées sur des erreurs
typiques rencontrées dans les devoirs.

• Les méthodes map, select, reject doivent
être utilisées pour produire une nouvelle
collection, et non pour des effets de bord.

NON
res = []
a.map { |x| res << foo(x) }

OK
a.map { |x| foo(x) }

• On utilise une instruction avec garde seulement
si l’instruction s’écrit sur une seule ligne :

instr if condition # O K s i i n s t r c o u r t e .

Si l’instruction est trop longue, alors on utilise
une instruction if :

if condition
instruction

end

• Il faut éviter les effets de bord dans les gardes :
puts x if x = ARGV.shift # N O N !

Dans certains cas simples, on peut accepter une
affectation en début d’une instruction :

if x = ARGV.shift
puts x

end

• On utilise une instruction avec garde seulement
si le cas complémentaire n’a pas besoin
d’être traité :

instr1 if condition
instr2 unless condition # N O N !

Autrement, on utilise plutôt une instruction if :
if condition

instr1
else

instr2
end

• Il est correct d’enchainer plusieurs appels de
méthodes. :

OK s e u l e m e n t si * très * c o u r t

res = a.select { |x| ... }.map { |x| ... }.sort.join

Preferable lorsque plusieurs appels: plus facile
a lire, a modifier,

pour ajouter un autre appel, etc.
OK
res = a.select { |x| ... }

.map { |x| ... }

.sort

.join

• Dans le bloc transmis à reduce, la mise à jour
de l’accumulateur se fait implicitement :
N O N

(1..n). reduce (1.0) { |res , x| x == 0 ? res : res /= x }

OK
(1..n). reduce (1.0) { |res , x| x == 0 ? res : res / x }

Note : La 1ère expression fonctionne parce que :
res /= x # e s t la m e m e c h o s e q u e

res = res / x

et p a r c e q u e

(res = v) == v

4.D Méthodes attr_reader et attr_writer

Exemple Ruby 4.82 Une définition des méthodes attr_reader et attr_writer.

class Class
def attr_reader(attr)

self.class_eval "
def #{attr}

@#{attr}
end

"
end

def attr_writer(attr)
self.class_eval "

def #{attr }=(v)
@#{attr} = v

end
"

end
end

class Foo
attr_reader :bar
attr_writer :bar

def initialize
self.bar = 0

end
end

foo = Foo.new
foo.bar += 3

Exemple Ruby 4.83 Une autre définition des méthodes attr_reader et
attr_writer.

class Class
def attr_reader_(attr)

self.class_eval do
define_method attr do

instance_variable_get "@#{attr}"
end

end
end

def attr_writer_(attr)
self.class_eval do

define_method "#{attr}=" do |v|
instance_variable_set("@#{attr}", v)

end
end

end
end

class Foo
attr_reader :bar
attr_writer :bar

def initialize
self.bar = 0

end
end

4.E Interprétation vs. compilation

Soit l’affirmation suivante : «Ruby est un langage inter-
prété».

Cette affirmation est-elle vraie ou fausse?
Exercice 4.13: Ruby, un langage interprété?

Pourquoi les performances d’un programme Ruby sont-elles
généralement moins bonnes (programme plus lent /) que
celles d’un programme Java?

Exercice 4.14: Performances de Ruby.

