4. Introduction au langage Ruby par
des exemples

4.1 Introduction : Pourquoi Ruby?

Ruby, comme Perl et Python, est un langage de
«script» a typage dynamique :

Ruby. .. est un langage open-source dyna-
maique qui met ['accent sur la sstmplicité et la
productivité. Sa syntaze €élégante en facilite
la lecture et ['écriture.

https: //www. ruby-lang. org/ fr/

Concu, milieu 90, par Yukihiro Matsumoto:

Ruby is “made for developer happiness”!
Y. Matsumoto

https://www.ruby-lang.org/fr/

Tha Evoluition of Pragramming Languages
evalutian

Source Data. wikipedia.org, Monl

Figure 4.1: Arbre généalogique de divers langages de
programmation, incluant Ruby. Source: https://www.
madetech.com/blog/pros-and-cons-of-ruby-on-rails.

https://www.madetech.com/blog/pros-and-cons-of-ruby-on-rails
https://www.madetech.com/blog/pros-and-cons-of-ruby-on-rails

Pascal

\

lawascript

wisual Basic

e

Mondrian

Autolis

PLSA
alpnard
Y
Olbjecthve-C] W G
“odula-2
Emacs Lisp
Modula-3 Cberon
Joss [
~
5 Supsrfasic
A CITRAN o
ELCOMP Cammaon Lisp
STRINGCCHME /
COKE
FILECCHP
MUMBES Lega
F
Maclsp
Scheme r
mndan

R oy S

Langage Année | Caractéristiques
Lisp 1958 | approche fonction-
nelle
meétaprogrammation
1974 | 1itérateurs
1980 |langage objet pur,
blocs de code
GUI, sUnit
Eiffel 1986 Uniform Access
Principle
1987 | expressions
régulieres et pattern-
matching
Ruby 1993

Tableau 4.1: Les ancétres de Ruby.

Language Rank Types Spectrum Ranking

Doe [
2w @07 BRI
sowon ® @ BB
“ o Joe BB
- E
co 907 N
e @ BAL
msow @0 BRI
shw © T B

weo @ T EEL

Figure 4.2: Les 10 premiéres positions du palmares «The
2016 Top Programming Languages» (IEEE Spectrum).

Philosophie de Ruby

[didn’t work hard to make Ruby perfect for
everyone, because you feel differently from
me. No language can be perfect for every-
one. [tried to make Ruby perfect for me,
but maybe it’s not perfect for you. The
perfect language for Guido van Rossum is probably
Python [peut-étre aussi pour vous. .. ou pas?/.

Yukihiro Matsumoto

Source : http://www.artima.com/intv/ruby.html

http://www.artima.com/intv/ruby.html

Sometimes people jot down pseudo-code on
paper. 1f that pseudo-code runs directly on
their computers, it’s best, isn’t it? Ruby tries
to be like that, like pseudo-code that runs.
Python people say that too.

Yukihiro Matsumoto

Source : http://www.artima.com/intv/ruby.html

http://www.artima.com/intv/ruby.html

Un petit exemple : Somme de deux tableaux

Version Ruby/PRuby

def somme_tableaux(a, b)
c = Array.new(a.size)

PRuby.pcall(0...c.size,
-> (i) { cl[i] = alil + bl[i] }
)

c
end

| Version Java|

public static int[] sommeTableaux(int al[], int
int n = a.length;
int c[] = new int[n];

Thread threads[] = new Threadl[n];
for(int i = 0; i < n; i++) {
int fi = 1i;
threads[i] = new Thread(
() -> cl[fi] = al[fi] + Db[fi]

) ;
threads [i].start ();
}
for(int i = 0; i < n; i++) {

try { threads[i].join(); } catch(Exception
+

return c;

b[]) A

e){};

Ruby inherited the Perl philosophy of having
more than one way to do the same thing.

Yukihiro Matsumoto

Source : http://www.artima.com/intv/rubyP.html

http://www.artima.com/intv/rubyP.html

Mises en oeuvre de Ruby

Derniére version = Ruby 2.4.0 (25 décembre 2016)

Source : https://www.ruby-lang.org/en/news/2016/12/25/ruby-2-4-0-released/

https://www.ruby-lang.org/en/news/2016/12/25/ruby-2-4-0-released/

Plusieurs mises en oeuvre de Ruby sont
disponibles
$ rvm list known

MRI Rubies
[ruby-11.8.6[-p420]

[ruby-]1.8.7[-head] # security released on head

[ruby-]11.9.1[-p431]

[ruby-11.9.2[-p330]

[ruby-]11.9.3[-p551]

[ruby-12.0.0[-p643]

[ruby-]12.1.4

[ruby-]2.1[.5] # GoRuby

[ruby-12.2[.1] goruby

[ruby-]2.2-head # Topaz

ruby-head topaz

JRuby # MagLev

jruby-1.6.8 maglev[-head]

jruby[—1.7.19] maglev-1.0.0

jruby-head # Mac 0S X Snow Leopard Or Newer

jruby-9.0.0.0.prel macruby-0.10
macruby-0.11

Rubinius macruby [-0.12]

rbx-1.4.3 macruby-nightly

bx-2.4 1 macruby-head

rbx[-2.5.2] # IronRuby

rbx-head ironruby[-1.1.3]
ironruby-head

Opal

opal

Minimalistic ruby implementation - ISO 30170:2012
mruby [-head]

Ruby Enterprise Edition
ree-1.8.6
ree[-1.8.7][-2012.02]

Figure 4.3: Les mises en oeuvre de Ruby disponibles par
intermédiaire de rvm (février 2016) .

Plusieurs mises en oeuvre sont disponibles :

e MRI (CRuby)
e JRuby

e Rubinius

il
|I||

M.- mi ©

©, 0 JECTFAB gettyimages' @, 0BJECTEAB [AvEel)

@ [. 4 innoQ

hw. comca

vHU 0 swiftype ”"m (comcast
él’“PP“-‘t @n—t—, sounocious ThoughtWorks:

Rabobark
B Doz, [l vISA e
SIHPLE D!US N @EUMHE MNEWS

[l
o HK

-
-
—

P SPOSTEOMTA @ |nmre: Medi L'-‘n.* @ minale
ﬁ Travis Cl W elasticsearch,
o oracie Lookow B OTelmate b 7
F —— ¥ HomeAway- ""FaEtF'ErH:Il
Imngm:lul Burt. e XN e #,‘;—__,.—'? u oo Tosans
maestrano

Figure 4.4: Quelques organisations qui utilisent JRuby.
Source : «JRuby 9000 Is Out; Now What?, T. Enebo and C. Nutter, RubyConf 2015,

https://www.youtube.com/watch?v=Kif jmbSHHsO

https://www.youtube.com/watch?v=KifjmbSHHs0

4.2 Compilation et exécution de pro-
grammes Ruby

Exemple Ruby 4.1 Deux versions d’un programme «Hello world!».

$ cat helloO.rb
puts ’Bonjour le monde!’

$ ruby helloO.rb
Bonjour le monde!

$ cat hellol.rb
#!/usr/bin/env ruby

puts ’Bonjour le monde!’

$ 1s -1 hellol.rb
-rwxr-xr-x. 1 tremblay tremblay 46 26 jun 09:52 hellol.rbx

$./hellol.rb
Bonjour le monde!

4.3 1irb : Le shell interactif Ruby

e Premiére facon facile pour interagir avec Ruby
— et comprendre comment Ruby fonctionne

e Met en oeuvre un REPL
= Read-Eval-Print Loop

TANTQUE session pas terminée FAIRE
Lire une expression
Evaluer 1’expression

Imprimer la valeur de 1’expression
FIN

Exemple Ruby 4.2 irb, le shell interactif de Ruby.

$ irb --prompt=simple
>> 10
=> 10

>> 2 + 4

>> puts ’Bonjour le monde!’
Bonjour le monde!
=> nil

>> r = puts ’Bonjour le monde!’
Bonjour le monde!

=> nil

>> T

=> nil

>> puts(’Bonjour le monde!’)
Bonjour le monde!
=> nil

>> STDOUT.puts(’Bonjour le monde!’)
Bonjour le monde!
=> nil

>> STDERR.puts(’Bonjour le monde!’)
Bonjour le monde!
=> nil

>> STDIN.puts(’Bonjour le monde!’)
I0Error: not opened for writing
from org/jruby/RubyIO0. java:1407:in ’write
[...]
from /home/tremblay/.rvm/rubies/jruby-1.7.16.1/bin/irb
>(root)’

>>

_ denote la valeur de

8 x 100 / 2
400

_ o+
800

_/ 3
266

_/ 3.0
88.66666666666667

la

derniere

expression

evaluee .

0On peut creer une

1’objet courant.

>>

irb [10, 20]

self.class
Array

self
(10, 20]

size
2

irb "abcde"
self

"abcde"

=D

nouvelle

Osignal_status=:IN_EVAL,

self
[10, 20]

"session"

(interne)

qui

modifie

> #<IRB::Irb: Qcontext=#<IRB::Context:0x0000000170a660 >,
Oscanner=#<RubyLex :0x0000000191a

4.4 Tableaux

Exemple Ruby 4.3 Les tableaux et leurs opérations de base.

>>
7>
=>

>>
=>

Valeurs 1litterales

a = [10, 20,
(10, 20, 30]

al0]
10

al[2]
30

al2] = b5
55

a
(10, 20, 55]

a.size
3

30]

b

indexation

et taille.

?> # Valeur nil par defaut et extension de la taille.
7> al6]
=> nil

>> a.size

>> al[b] = 88
=> 88

>> a.size

>> a

?> # Valeur nil par defaut et extension de la taille.
7> al6]
=> nil

>> a.size

>> al[b] = 88
=> 88

>> a.size

>> a
=> [10, 20, 55, nil, nil, 88]

7>
7>

Acces au
ala.size-1]
88

al-1]
88

>dernier’

element .

Autre forme de commentaire :

=begin
Blah blah

=end

Exemple Ruby 4.4 Les tableaux et leurs opérations de base (suite 1).

?> # Tableaux heterogenes.
7> a

=> [10, 20, 55, nil, nil, 88]

>> al[8] = ’abc’
=> "gbc"

>> a
=> [10, 20, 55, nil, nil, 88, nil, nil, "abc"]

?> # Ajout d’elements.
?> a = []

=> []

>> a << 12
=> [12]

>> a << ’abc’ << [2.7, 2.8]
=> [12, "abc", [2.7, 2.8]]

Creation de tableaux

b:
(10,

d =

Array.new(3) { 10 }
10, 10]

Array .new (4)

[nil, nil, nil, nil]

avec

valeurs

initiales.

Exemple Ruby 4.5 Les tableaux et leurs opérations de base (suite 2).

?> # Tranches de tableaux.
?> a = [10, 20, 30, 40, 50]
=> [10, 20, 30, 40, 50]

>> al[0..2]
=> [10, 20, 30]

>> al[3..3]
>> al1l..-1]
7]

\V;
\VARV
o
| |
\]

-~
-~

Tranches de

a = [10, 20,
[10, 20, 30,
al0..2]

[10, 20, 30]

al3..3]

[40]

all..-1]

[20, 30, 40, 50]

al7..7]
nil

tableaux.

30,
40,

40,
50]

50]

7>
>>
=>

>>

>>
=>

>>
=>

Intervalles 1inclusifs vs.

a
(10,

all..
[20)

all..
[20)
all..

[20,

all..
[20)

20, 30, 40, 50]

3]
30, 40]

. 3]
30]
a.size-1]

30, 40, 50]

.a.size]
30, 40, 50]

exclusifs

4.5 Chaines de caractéres

Exemple Ruby 4.6 Les chaines de caractéres et leurs opérations de base.

>> # String semblable a Array.
?> sl = ’abc’
=> "gbc"

>> gsl.size

>> s1[0..1] # Retourne String.
=> "gph"

>> s1[2] # Retourne String aussi!
=> ncn

7>
7>

Concatenation vs.

sl + ’def’
"abcdef"

sl
n abC n

sl << ’def’
"abcdef"

sl
"abcdef"

ajout .

Exemple Ruby 4.7 Les chaines de caractéres et leurs opérations de base (suite).

>> # Egalite de valeur

7>
=>

a, b = 2abc’, ’abc’
["abc" "abc"]

a == b

true

a.equal? b
false

al0] = ’X?
o

a
"Xbc"

n abC "

*sans *

partage

de

reference .

7>

Egalite de

a = b = ’abc’
n abC 1]

a == b

true

a.equal? b

true

al0] = ’X°
nyn

a
"Ybc"

b
" XbC 1"

valeur

avec

partage

de

reference .

Exemple Ruby 4.8 Interpolation d'une expression dans une chaine.

>>
7>
=>

?>
7>

Interpolation d’une
x = 123
123

"abc \"#{X}\”
n abc \n123\n

def"
def"

"#{10 * x + 1}’
712317 def"

"abc def "

"abc
"abc #{x > 0 7 ++?
"abc ++ def"

0} def"

String definie avec ...~
>abc "#{x}" def’

tabc \"\#{x}\" def"

expression

=> pas

dans une chaine.

d’interpolation.

Exemple Ruby 4.9 Opérations split et join.

Split decompose une chaine en sous -chaines

en fonction du <<motif >> specifie en argument.

>> s = "abc\ndef\nghi\n"
=> "abc\ndef\nghi\n"

>> s.split("\n") # Un cas typique'!
=> ["abc", "def”, "ghi”]

>> s.split("def")
=> ["abc\n", "\nghi\n"]

>> s.split("a")
=> ["", "bc\ndef\nghi\n"]

>> s.split (/\w{3}/) # \w = [a-2zA-Z0-9_]
=> [nu, "\Il", ”\Il", "\Il”]

#
#

>>
=>

>>
=>

>>
=>

>>
=>

Join combine un tableau de sous -chaines

en une chaine unique.

s
"abc\ndef\nghi\n"

r = s.split("\n")
['labcll, lldefll, ||ghill]

r.join("+"
"abc+def+ghi!"

r.join("\n") # Donc: s.split("\n").join ("\n")

"abc\ndef\nghi"

[].jOiIl(";")

[?abc’].join(";")
" abC 1"

[’abc’, ’def’].join(";")
"abc;def"

4.6 Symboles

e Symbol

= objet associé a un identificateur — représen-
tation unique dans la table des symboles

— possede une représentation sous forme

— d’un entier (& adresse)
— d’'une chaine

. mais n’est ni un entier, ni une chaine!

Exemple Ruby 4.10 Les symboles.

>> # Symbole = "sorte" de chaine *unique et immuable *.
>> :abc
=> :abc

>> :abc.class
=> Symbol

>> :abc.to_s
=> "gbc"

>> puts :abc

abc

=> nil

>> :abc[2]

=> g

>> :rabc[2] = "x"

NoMethodError: undefined method ’[]=’ for :abc:Symbol
from (irb):4
from /home/tremblay/.rvm/rubies/ruby-2.1.4/bin/irb:11:ir

>> "abc".to_sym
=> :abc

>> "abc def .!'#)".to_sym
=> :"abc def .!'#J"

Possede un numero
.a
ca

:a.object_id
365128

"a".object_id
11000000

"a".object_1id
10996280

:a.object_1id
365128

"a".to_sym.object_1id
365128

d’identification

unique .

?>
7>
>>

Egalite de
:abc == :abc
true
:abc.equal?
true

"abc" == "abc
true
"abc".equal?
false
"abc".to_sym
true
"abc".to_sym.

true

valeur vs. de
abc

n

n ab C n

== :abc
equal? :abc

reference .

4.7 Hashes

Objet Hash = forme généralisée de tableau

e 'index (la clé) est un objet arbitraire, pas juste
un entier

e Autres noms : Dictionnaires, maps

Exemple Ruby 4.11 Les hashes et leurs opérations de base.

>>
7>
=>

?>
7>
=>

Definition

d’un hash.

hash = { :abc => 3, :de => 2,
{:abc=>3, :de=>2, :ghijk=>5}

Principales proprietes.

hash.size

3
hash . keys
[:abc, :de,

hash.values
[3, 2, 5]

:ghijk]

Indexation.

hash [:abc]

hash [:de]

hash["de"]

> [77]

:ghijk

=>

5

by

>>

Definition d’un hash.
hash = { :abc => 3, :de => 2,
{:abc=>3, :de=>2, :ghijk=>5}

Principales proprietes.
hash.size
3

hash . keys
[:abc, :de, :ghijk]

hash.values
[3, 2, 5]

Indexation.
hash [:abc]
3

hash [:de]
2

hash["de"]
nil

:ghijk

=>

5

by

Exemple Ruby 4.12 Les hashes et leurs opérations de base (suite).

7>
>
=>

Definition d’une nouvelle <cle.

hash.include? '"de"

false

hash["de"] = 55
55

hash.include? "de"

true

Redefinition d’une
hash[:abc] = 2300
2300

hash
{:abc=>2300, :de=>2,

cle existante.

:ghijk=>5,

ude||=>55}

Exemple Ruby 4.13 Les hashes et leurs opérations de base (suite) : Création et
initialisation.

?> # Creation d’un Hash sans valeur par defaut.

?> h1 = {} # Idem: hl = Hash.new
=> {}

>> h1l[:xyz]

=> nil

>> # Creation d’un Hash avec valeur par defaut.
?> h2 = Hash.new(0)
=> {}

>> h2[:xyz]

>> h2[:abc] += 1

>> # Creation d’un Hash avec valeur par defaut.
Attention: La valeur est *partagee*

par toutes 1les cles!
?> h3 = Hash.new([])
=> {}

>> p h3[:x], h3[:y]
[]

[]

=> [[1, [1]

>> h3[:x] << "abc"

=> ["abc"]

>> p h3[:x], h3[:y]
["abc"]

["abc"]

=> [["abc"], ["abc"]]

>> # Creation d’un Hash avec valeur par defaut,
definie via un bloc pour avoir

une nouvelle valeur a chaque fois.
>> h4 = Hash.new { |h, k| h[k] = [] %
=> {}

>> p hd[:x], hd[:y]

[]

[]

=> [[], []]

>> h4[:x] << "abc"
=> ["abc"]

>> p hd[:x], h4[:y]
["abc"]

[]

=> [["abc"], []]

4.8 Expressions booléennes

Le point important a retenir pour comprendre les
expressions booléennes :

e false et nil sont des valeurs «faussesy

e Toute autre valeur est «vraiey.

Quelques exemples avec l'opérateur ternaire 7:

>> false ? ’oui’ : ’non’
=> "non"

>> nil ? ’oui’ : ’non’

=> ’non’

> 0 7 ’oui’ ’non’

=> "oui"

>> ’2 7 J2o0ui’ : ’non’

(irb):5: warning: string literal in condition
=> "oui"

>> nil.nil? 7 ’nil’ : ’pas nil’
=> "nil"

Exemple Ruby 4.14 Les expressions booléennes.

>>
7>
=>

sont

Toute valeur differente de
true 7 ’oui’ ’non’

n OU.l 1]

0 ? ’oui’ ’non’

n 01.11 n

[1] ? ’oui’ ’non’

n O'Lll 1]

Seuls false et nil ne
false 7 ’oui’ ’non’

n non n

nil ? ’oui’ ’non’

n non 1]

lfalse 7 ’oui’ ’non’

n Oul n

'nil 7 ’oui’ ’non’

n OU.l "

Seul nil est nil

2.nil7? 7 ’nil”’ ’pas nil’
"pas nil"

[].nil? 7 ’nil’ ’pas nil’

"pas nil"

nil.nil? 7

Ilnilll

’nil”’

’pas nil’

false ou

pas

nil

vraies.

est

vraie.

Exemple Ruby 4.15 Les expressions booléennes (suite 1).

7>
>
=>

>>
=>

7>

Les expressions && et
true || (3 / 0) 7 true
true

false && (3 / 0) 7 true
false

false || (3 / 0) 7 true

ZeroDivisionError: divided

[...]

>> true && (3 / 0) ? true
ZeroDivisionError: divided

[...]

|| sont

false

false

false
by 0

false
by O

court -circuitees.

Exemple Ruby 4.16 Les expressions booléennes (suite 2).

>7 # L’operateur || retourne la premiere expression
’non fausse’, sinon retourmne la derniere expression.
7> 2 || 3
> nil || false || 2 || false
=>
> nil || false
=>
>> false || nil

?°?

L’operateur || retourne la premiere

’non fausse’, sinon retourne la derniere
2 |l 3

2

nil || false || 2 || false

2

nil || false

false

false || nil

nil

expression

expression.

Exemple Ruby 4.17 Les expressions booléennes (suite 3).

On peut utiliser ||= pour initialiser une variable ,

sauf si elle est deja initialisee.

>> X

NameError: undefined local wvariable or method ’x’ for main: 0
[...]

>> x ||= 3

=> 3

>> X

=> 3

>> x ||]= 8

=> 3

>> X

=> 3

Abréviations :
X += 1 # x = x + 1
x /= 2 # x = x /[2
X I |= 1 # x || x = 1 ET non pas x =
x &&= 1 # x && x = 1 Et mnon pas x =

4.9 Définitions et appels de méthodes

Exemple Ruby 4.18 Définitions et appels de méthodes.

>> # Definition et appels de methode.
def add(x, y)
X + y
end

>> add(2, 3)
>> add 20, 30 # Les parentheses sont optionnelles.
=> 50

>> # Resultat derniere expression evaluee.

def abs(x)
if x < 0 then -1 * x else x end
end

>> abs(3)
=> 3

>> abs(-3)
=>3

>>

On utilise

def abs2(x)

return pour

return x 1if x >= 0

-X
end

abs2(23)
23

abs2(-23)

23

sortir

avant la fin ’.

Remarque : «;» est un séparateur!

def add(x, y); x + y; end

Remarque : «return» est implicite
def add(x, y)
X + y
end

def add(x, y)
return x + y
end

Attention : Parenthéses et appels de méthodes :

add(2, 3) ¢ 0K ©
add 2, 3 + 0K ©
add (2, 3) # Pas 0Kk ®

add (1+1), (2+1) # 0K ©

Exemple Ruby 4.19 Appels de méthodes et envois de messages.

>7?
7>
=>

>7
>7

Un operateur

+ 3

+(3)

Un appel de

+(C 3)

.send (

D+

3

3

est une

methode

)

methode .

est

un

envoi

de

message .

4.10 Structures de controle

Exemple Ruby 4.20 Structures de controles: if.

>> # Instruction conditionnelle classique.
def div(x, y)
if y == 0
fail "QOops! Division par zero :("
else
x /y
end
end

>> div(12, 3)
=> 4

>> div(12, 0)
RuntimeError: QOops! Division par zero :(
from (irb):4:in ’div’
[...]
from /home/tremblay/.rvm/rubies/jruby-1.7.16.1/bin/irb

>> # Garde (condition) if associee a une instruction.
def div(x, y)
fail "QOops! Division par zero :(" if y == 0

x /y
end

>> div(12, 3)

Exemple Ruby 4.21 Structures de controles: while.

?> # Instruction while.
def pgcd(a, b)
On doit avoir a <= b.

return pgcd(b, a) if a > b

while b > 0
a, b=>b, a%b
end

a
end

>> pgecd(12, 8)
=> 4

>> pgcd(80, 120)
=> 40

Affectations multiples (paralléles) :

X, 'y =YV, X

Exemple Ruby 4.22 Structures de controles : Itération sur les index avec for et
each_index.

?> # Instruction for

def somme(a)

total = 0
for 1 in 0...a.size
total += ali]
end
total
end

>> somme ([10, 20, 30])
=> 60

?> # Iterateur each_index.
def somme(a)
total = 0
a.each_index do |il
total += ali]
end

total
end

>> somme ([10, 20, 30])
=> 60

Exemple Ruby 4.23 Structures de controles : Itération sur les éléments avec for
et each.

?> # Instruction for (bis)
def somme(a)
total = 0
for x in a
total += x
end

total
end

>> somme ([10, 20, 30])
=> 60

7> # Iterateur each.
def somme(a)
total = 0
a.each do |x|
total += X
end

total
end

>> somme ([10, 20, 30])
=> 60

4.11 Paramétres des méthodes

Exemple Ruby 4.24 Paramétres des méthodes : valeur par défaut et nombre
variable d’arguments.

?> # Argument optionnel et valeur par defaut.
def foo(x, y = 40)
Xty
end

>> foo(3, 8)

>> foo(3)

?>

Argument
def foo(x,

x +y
end

foo(3, 8)
11

foo(3)
43

optionnel

y = 40)

et

valeur

par

defaut .

>>

I
A\

I
vV Vv

Nombre variable

xargs, y)

"bar (#{x}, #{args},

def bar(x,
end
bar(1, 2,

bar(1, 2)

bar(23)

3, 4, 5)

d’arguments .

#{yr)"

>> # Nombre variable d’arguments.
def bar(x, *args, y)

"bar (#{x}, #{args}, #{y})"
end

>> bar(1, 2, 3, 4, 5)
=> "par(1, [2, 3, 4], 5)"

>> bar(1, 2)
=> "pbar(1, [1, 2)"

>> bar(23)
ArgumentError: wrong number of arguments (1 for 2+)
from (irb):24:in ’bar’
from (irb):27
from /home/tremblay/.rvm/rubies/ruby-2.1.4/bin/irl

Exemple Ruby 4.25 Paramétres des méthodes : arguments par mots-clés (keyword
arguments).

>> # Arguments par mot-cles (keyword arguments).
def diviser (numerateur:, denominateur: 1)
numerateur / denominateur
end

>> diviser numerateur: 12, denominateur: 3

>> diviser denominateur: 3, numerateur: 12

>> diviser numerateur: 12
=> 12

>> diviser 10
ArgumentError: missing keyword: numerateur
from (irb):31
from /home/tremblay/.rvm/rubies/ruby-2.1.4/bin/irb:;

?> # Argument par mot-cle.
def premier_index(a, x, res_si_absent: nil)
a.each_index do |il
return i if al[i] == x
end
res_sil_absent
end

>> premier_index([10, 20, 10, 20], 10)

=> 0

>> premier_index([10, 20, 10, 20], 88)

=> nil

>> premier_index([10, 20, 10, 20], 88, res_si_absent: -1)
=> -1

Autre facon, mais moins claire :
def premier_index(a, x, res_si_absent = n

end

premier_index([10, 20, 10, 20], 88, -1)

Soit la méthode suivante :

def foo(x, y, z = nil)
return x + y *x z if =z

X ok y
end
Indiquez ce qui sera affiché par chacun des appels suivants :

a.
puts foo(2, 3)

b.
puts foo 2, 3, 5

c.

puts foo("ab", "cd", 3)
d.

puts foo("ab", "cd")

Exercice 4.1: Définition et utilisation de méthodes diverses
avec plusieurs sortes d’arguments.

Soit la méthode suivante :

def bar(v = 0, *xs)
m = v
xs.each do |x|
m = [m, x].max
end

m
end

Indiquez ce qui sera affiché par chacun des appels suivants :

a.
puts bar

b.
puts bar(123)

c.
puts bar(0, 10, 20, 99, 12)

Exercice 4.2: Définition et utilisation de méthodes diverses
avec plusieurs sortes d’arguments.

Soit le segment de code suivant :

def foo(x, *xy, z = 10)
X + y.size + z
end

puts foo(10, 20, 30)
Qu’est-ce qui sera affiché?

Exercice 4.3: Définition d'une méthode avec plusieurs
sortes d’arguments.

4.12 Définitions de classes

Exemple Ruby 4.26 Un script avec une classe (simple) pour des cours.

$ cat cours.rb
Definition d’une classe (simple!) pour des cours.
class Cours

attr_reader :sigle

def initialize(sigle, titre, *prealables)

O@sigle = sigle
Otitre = titre
O@prealables = prealables
end
def to_s

sigles_prealables = " "
@prealables.each do |cl

sigles_prealables << "#{c.siglel} "
end

"< #{0sigle} ’#{0titre}’ (#{sigles_prealables}) >"
end
end

(suite du fichier page suivante). . .

Exemple Ruby 4.26 Un script avec une classe (simple) pour des cours (suite).
Note : «$0» = nom du programme Ruby en cours d’exécution.

if $0 == FILE

Definition de quelques cours.

inf1120 = Cours.new(:INF1120, ’Programmation I’)

inf1130 = Cours.new(:INF1130, ’Maths pour informaticien’

inf2120 = Cours.new(:INF2120, ’Programmation II’,
inf1120)

inf3105 = Cours.new(:INF3105, ’Str. de don.’,

inf1130, inf2120)

puts inf1120

puts inf3105

puts infl1120.sigle

puts infl1120.titre
end

Exemple Ruby 4.27 Appel du script avec une classe pour des cours.

$ ruby cours.rb

< INF1120 ’Programmation I’ () >

< INF3105 ’Str. de don.’ (INF1130 INF2120) >

INF1120

NoMethodError: undefined method ‘titre’ for #<Cours:0x13969f
(root) at cours.rb:34

Une «déclaration» «attr_reader :sigle» définit
un attribut accessible en lecture, équivalent a la
méthode suivante :

def sigle
@sigle
end

Note : En fait, <attr_reader :sigle» représente
un appel a la méthode attr_reader avec 'argument
:sigle. Voir plus loin.

Pour la classe Cours, définissez une méthode qui permet
d’obtenir le titre d’un cours et une autre méthode qui permet
de modifier le titre d’un cours.

Utilisez ensuite cette derniere méthode pour changer le titre
du cours inf1120 en "Programmation Java I".

Exercice 4.4: Méthodes pour lire et modifier le titre d'un
cours.

4.13 Lambda-expressions

Les lambda-expressions — A-expressions — sont le
fondement de la programmation fonctionnelle.

Exemple Ruby 4.28 Les lambda-expressions : type et méthodes de base.

>> # Une lambda -expression represente un objet,

de classe Proc, qu’on peut ’appeler ’.

Un Proc est donc une "fonction anonyme".
?> lambda { 0 }.call
>> zero = lambda { 0 }

=> #<Proc:0xbcbeefef@(irb):2 (lambda)>

>> zero.class

=> Proc

>> zZero.arity # Lambda avec 0 argument!
=> 0

>> ZzZero.parameters

=> []

>> zero.call

?> # Une lambda -expression peut avoir des arguments.
?> inc = lambda { [x| x + 1 }
=> #<Proc:0x162932a2@(irb):8 (lambda)>

>> 1inc.arity

>> 1inc.parameters
=> [[:req, :x]]

>> inc.call(3)

Et le nombre d’arguments est verifie!

>> inc.call

ArgumentError: wrong number of arguments (0 for 1)
from [...]

>> inc.call(10, 20)

ArgumentError: wrong number of arguments (2 for 1)
from [...]

double = lambda do |y

y ty
end
#<Proc:0x5158b42f0@(irb):11 (lambda)>

double.arity
1

double.call(3)
6

Exemple Ruby 4.29 Les lambda-expressions, comme n’importe quel autre objet,
peuvent étre transmises en argument.

>> # Une methode pour executer deux fois du code (sans arg..
def deux_fois(f)
f.call
f.call
end

>> deux_fois(lambda { print ’Bonne ’; print ’journee!\n’ }
Bonne journee!

Bonne journee!

=> nil

>> deux_fois lambda { print ’Bonne ’; print ’journee!\n’ }
Bonne journee!
Bonne journee!

=> nil
?> # Ici, les () sont obligatoires , sinon erreur de syntaxe
7> deux_fois (lambda do

print ’Bonne ’
print ’journee!\n’
end)
Bonne journee!
Bonne journee!
=> nil

Exemple Ruby 4.30 Les lambda-expressions, comme n’importe quel objet, peu-
vent étre retournées comme résultat d’une fonction.

?>
7>

Une lambda -expression peut etre retourmnee comme

def plus_x(x)
lambda { |yl x + y }
end

plus_x(3).call(12)
15

plus_bis = lambda { |al lambda { |b]|
#<Proc:0x2d7275fc@(irb) :44 (lambda)>

plus_bis.call(3).call(12)
15

a + b } }

result:

Exemple Ruby 4.31 Le bloc d'une lambda-expression capture les variables non-

locales.

7>

?>

Le bloc d’une lambda -expression ’capture’

les variables non-locales utilisees
x = 23
23

plus_x = lambda { |yl x + y }
#<Proc:0x72d1ad2e@(irb):31 (lambda)>

plus_x.call(7)

30

x = 999

999
plus_x.call 2

1001

dans

le

bloc.

Exemple Ruby 4.32 Les appels a une lambda-expression peuvent aussi étre faits
avec «. ()» plutot qu'avec call — mais c’est rarement utilisé!

>> lambda { 0 }.()
:>O

>> zero = lambda { 0 }

=> #<Proc:0x5cbeefef@(irb):2 (lambda)>

>> zero. ()

>> inc = lambda { Ix| x + 1 }
=> #<Proc:0x16293aa20(irb):8 (lambda)>

>> inc.(3)

Pour la classe Cours :

a. Définissez une méthode prealables qui regoit en argu-
ment un predicat — une lambda-expression — et qui
retourne la liste des préalables du cours qui satisfont ce
predicat.

b. Utilisez la méthode prealables pour obtenir les préal-
ables du cours inf3105 dont le sigle contient la chaine
||INF||.

Remarque : Pour ce dernier point, vous devez
utiliser une expression de pattern-matching. En Ruby;,
’expression suivante retourne un résultat non nil si x,
une chaine, matche le motif INF :

/INF/ =~ x

Plus précisément, l'expression retourne nil si le motif
n’apparait pas dans la chaine, sinon elle retourne la po-
sition du premier match.

Exercice 4.5: Une méthode pour identifier un sous-
ensemble de préalables d’un cours.

4.14 Blocs

Un bloc est un segment de code entre accolades {. . . }
ou entre do...end :

a.each { |x| total += x }

a.each_index do |i]
total += ali]
end

inc = lambda { |x| x+ 1 }
double = lambda do |yl

yty
end

Un bloc est un segment de code entre accolades {. .. }
ou entre do...end :

a.each { |x| total += x }

a.each_index do |i]
total += ali]
end

inc = lambda { |x| x + 1 }

double = lambda do |y

yty
end

Mais plus important :

A block is a chunk of code that can be passed
to an object/method and [can be| executed
under the context of that object.

https: //scotch. 10/ tutorials/understanding-ruby-closures

Un bloc est semblable a une lambda-expression,
mais pas tout a fait identique :

Lambda-expression |Bloc

Objet (Proc) créé de| Utiliste comme argu-

facon explicite ment implicite d’une
méthode
Fvalué avec call Evalué avec yield

Peut étre transformé
en Proc (argument ex-
plicite d'une méthode)

https://scotch.io/tutorials/understanding-ruby-closures

L’utilisation des blocs en Ruby est étroitement lice
a l'instruction yield.

Quelques définitions du verbe anglais «to yield» :

e to produce (something) as a result of time, ef-
fort, or work

e to surrender or relinquish to the physical control
of another : hand over possession of

Quelques traductions francaises possibles du verbe
«to yield» sont «céder» ou «produire.

yield, exécutée dans une méthode, a l'effet suivant :

e clle évalue le bloc passé en argument
® mais. . .

e ce bloc peut ne pas apparaitre dans la liste des
arguments

Exemple Ruby 4.33 Une méthode pour exécuter deux fois un bout de code —

avec un bloc.

>> # Une autre methode pour executer

def deux_fois
yield
yield

end

3

>> deux_fois { print ’Bonne ’;
Bonne journee!

Bonne journee!

=> nil

>> deux_fois do
print ’Bonne '’
print ’journee!\n’
end
Bonne journee!
Bonne journee!
=> nil

>> deux_fois

print

deux_fois du

>journee !'\n’

LocalJumpError: no block given (yield)

from (irb):1:in ’deux_fois’

from (irb):3

code

}

3

avec

from /home/tremblay/.rvm/rubies/ruby-2.1.4/bin/irb

>> # Methode pour executer k fois
def k_fois(k)
k.times do
yield
end
end

>> k_fois(3) do
print ’Bonne '’
print ’journee!\n’
end
Bonne journee!
Bonne journee!
Bonne journee!

du

code .

Exemple Ruby 4.34 Une méthode pour évaluer une expression — avec lambda,
avec bloc implicite et avec bloc explicite.

>>

>>

Methode pour

def evaluer(x, vy,

expr.call(x, y)

end

evaluer (10,
30

Methode pour

evaluer

expr)

une

20, lambda {

def evaluer(x, y)
yield(x, y)

end

evaluer (10,
200

20) {

evaluer

|a,

une

b|

expression:

avec

lambda .

lvi, v2| vi + v2 })

expression:

a *x b }

avec

bloc

implicit

>> # Methode pour evaluer une expression: avec bloc explicit
def evaluer(x, y, &expr)
expr.call(x, y)
end

>> evaluer(10, 20) { la, bl b / a }
=> 2

>>

0On peut verifier

def evaluer(x, y)

si un bloc a ete

return 0 unless block_given?
yield(x, y)

end

evaluer (10,
2
evaluer (10,
0

20) {

20

)

|a,

b|

b/ a }

passe

ou non.

>>

def foo(&b)

[b.class, b.arity, b.parameters]
end
:foo

foo
nil

foo { 2 }
[Proc, 0, []]

foo { |x| x + 1 }
[Proc, 1, [[:opt, :x]]]

if block_given?

Remarque concernant les deux formes de bloc :
Au niveau sémantique, les deux formes de blocs —
avec accolades {... } et avec do... end — sont
équivalentes.

Il existe toutefois une différence au niveau de la

priorité lors de 'analyse syntaxique :

Avec accolades => priorité + forte
foo bar { ... }

Equivalent

foo(bar() { ... })

Avec accolades => priorité - forte
foo bar do ... end

Equivalent

foo(bar()) { ... %}

4.15 Portée des variables

sigil (Esotérisme) Symbole graphique ou sceau
représentant une intention ou un étre magique.

Source : https://fr.wiktionary.org/wiki/sigil

Ruby utilise un certain nombre de sigils pour indi-
quer la portée des variables :

foo wvariable locale
©@foo variable d’'instance
©@0@foo variable de classe
$foo variable globale

https://fr.wiktionary.org/wiki/sigil

(Méme question que la précédente, mais en utilisant un bloc.)

Pour la classe Cours :

a. Définissez une méthode prealables qui regoit en argu-
ment un predicat — représenté par un bloc — et qui
retourne la liste des prélables du cours qui satisfont ce
predicat.

b. Utilisez la méthode prealables pour obtenir les
prélables du cours inf3105 dont le sigle contient la
chaine "INF".

Remarque : Pour ce dernier point, vous devez
utiliser une expression de pattern-matching. En Ruby,
'expression suivante retourne un résultat non nil si x,
une chaine, matche le motif INF :

/INF/ =" x

Plus précisément, 'expression retourne nil si le motif
n’apparait pas dans la chaine, sinon elle retourne la po-
sition du premier match.

Exercice 4.6: Une méthode pour identifier un sous-
ensemble de préalables d'un cours.

Exemple Ruby 4.35 Illustration de la vie et portée des variables.

>> # Une definition de methode ne voit pas

les variables non-locales.
7> x = 22

>> def set_x
x = 88
end
=> :!set_x

>> set_x
=> 88

>> X # Inchangee!

7>

7>

Un bloc capture les variables
si1 elles existent.

def executer_bloc

yield
end
:executer_bloc
x = 44
44
executer_bloc { x = 55 }
55

X # Modifiee!!

non -locales

?> # Si la variable n’existe pas deja,
alors est strictement locale au bloc.
7> z

NameError: undefined local variable or method ’z’ for main:0

[...]

?> executer_bloc { z = 88 }
=> 88

>> z
NameError: undefined local wvariable or method ’z’ for main: 0

[...]

>>
7>

>>

Une variable globale est
$x_glob = 99
99

def set_x_glob
$x_glob = "abc"

end

:set_x_glob

set_x_glob
" abc "

$x_glob
" abC 1"

accessible

lambda { $x_glob = [10, 20] }.call

[10, 20]

$x_glob
[10, 20]

partout!

>>

7>

Une
de

variable 1locale

la methode.

def foo(x)
if x <= 0 then a

[a,
end
:foo

b]

foo(0)
[1, nil]

foo(99)

[nil,

”BAR"]

est accessible

1 else b =

||BARII

dans

end

l’ensemble

>> # Mais un bloc definit une nouvelle portee, avec des var:
strictement locales!
7> def bar(*args)
args.each do |[x]|

r = 10
puts x * r
end
r
end
=> :bar

>> bar(10, 20)

100

200

NameError: undefined local variable or method ’r’ for main: 0

[...]

4.16 Modules

Modules are a way of grouping together meth-
ods, classes, and constants. Modules give

you two major benefits:

1. Modules provide a namespace and prevent
name clashes.

2. Modules implement the mizin facility.

Source : http://ruby-doc.com/docs/ProgrammingRuby/html/tut_modules.html

http://ruby-doc.com/docs/ProgrammingRuby/html/tut_modules.html

Exemple Ruby 4.36 Les modules comme espaces de noms.

module M1
Cl =0
end

module M2
Cl = ’abc’
end

module M3
module M4
Cl = :c1
end
end

M1::C1 == 0 # => true
M2::C1 == ’abc’ # => true
M3::M4::C1 == :cl # => true

M1::C1 1= M2::C1 # => true
M1::C1 '= M3::M4::C1 # => true

module Modulel
def self.zero
0
end

def un
1
end

def val_x
0x
end

def inc_inc(y)
inc(y)
inc(C y)
end
end

class C1
linclude Modulel]

def initialize(x)
0x = X
end

def inc(y)

0x +=y
end
end
class C2

linclude Modulel]
end

Exemple Ruby 4.37 Un module mixin Modulel et son utilisation.

>> # Appel sur le module de la methode de classe.
7> Modulel. zero

>> # Appel sur le module de la methode d’instance.
?> Modulel .un
NoMethodError: undefined method ’un’ for Modulel:Module

>> # Appel sur un objet Cl1 des methodes
?> # de classe et d’instance du module.
?> c1 = Cl.new(99)

=> #<C1:0x12cf7ab ©@x=99>

>> cl.zero
NoMethodError: undefined method ’zero’ for #<C1:0x12cf7ab

>> cl.un

=> 1

>> cl.val_x

=> 99

>> cl.inc_inc(100)
=> 299

>> # Appel sur un objet C2 des methodes

7> # de classe et d’instance du module.

?> c2 = C2.new

=> #<C2:0x1a8622>

>> c2.un

=> 1

>> c2.val_x

=> nil

>> ¢2.inc_inc (100)

NoMethodError: undefined method ’inc’ for #<C2:0x1a8622>

0x

NomDuModule . nom_methode

NomDuModule::nom_methode

module Modulel
def self.zero
0
end

def un
1
end

def val_x
0x
end

def inc_inc(y)
inc(y); inc(y)
end
end

?> Modulel.zero

?> Modulel .un

7> Modulel.val_x

class C1

dule Modulel
pocu-e Todule linclude Modulel|

def self.zero

0
def initialize(x)
end
0x = X
def un end
1)
def inc(y)
end
0x +=y
def val_x end
end
0x
end
def inc_inc(y)
inc(y); inc(y)
end
end
#

?7> cl1 = Cl.new(99)
=> #<C1:0x12cf7ab ©0x=99>

>> cl.zero

>> cl.un

=> [77]

>> cl.val_x

=> [77]

>> ¢cl1.inc_inc (100)

=> [77]

module Modulel
def self.zero
0
end

def un
1
end

def val_x
0x
end

def inc_inc(y)
inc(y); inc(y)
end
end

class C2
linclude Modulel]
end

7> c2 = C2.new
=> #<C2:0x1a8622>

>> c2.un

=> [77]

>> c2.val _x

=> [77]

>> ¢c2.inc_inc (100)

module Modulel
def self.zero
0
end

def un
1
end

def val_x
0x
end

def inc_inc(y)
inc(y); inc(C y)
end
end

7> Modulel.zero

7> Modulel .un
NoMethodError: undefined method ’un’ for Modulel:Module

7> Modulel.val_x
NoMethodError: undefined method ’val_x’ for Modulel:Module

class C1

dule Modulel
module [llodule linclude Modulel]

def self.zero

0
def initialize(x)
end
0x = X
def un end
1 def inc(v)
end Y
0x +=y
def val_x end
end
0x
end
def inc_inc(y)
inc(y); inc(y)
end
end
#

?7> cl1 = Cl.new(99)
=> #<C1:0x12cf7ab ©0x=99>

>> cl.zero

NoMethodError: undefined method ’zero’ for #<C1:0x12cf7ab 0x=99>

>> cl.un

>> cl.val_x
=> 99

>> cl1.inc_inc(100)
=> 299

class C2
linclude Modulel]
end

module Modulel
def self.zero
0
end

def un
1
end

def val_x
0x
end

def inc_inc(y)
inc(y); inc(y)
end
end

?> c2 = C2.new
=> #<C2:0x1a8622>

>> c2.un

>> c2.val_x
=> nil

>> c2.inc_inc (100)
NoMethodError: undefined method ’inc’ for #<C2:0x1a8622>

4.17 Modules Enumerable et Comparable

4.17.1 Module Enumerable

Learn to use Enumerable. You will not be a rubyist
until you do.

«Ruby QuickRef», R. Davis

(/http: // www. zenspider. com/ Languages/ Ruby/ QuickRef. html)

La figure a la page 7?7 présente la liste des méthodes
du module Enumerable — donc les diverses métho-
des disponibles lorsque la méthode each est définie
par une classe et que le module Enumerable est in-
clus (avec include)!

http://www.zenspider.com/Languages/Ruby/QuickRef.html

segl?

Methods
Hi
CIEW
:rtry_convert afetch
L #fill
L #find_index
#+ afirst
’- #flatten
#oe #flatten!
W= 'frUEE“?
#== #hash
o[sinclude?
#ll= #index
Ramy? #initialize_copy
35500 vi
dat 5
L
#bsearch mEPEH
#clear e
#collect rheep.if
#last
#collect!
#len
combination Bth
#compact #map
#commpact! smap!
#concat pek _
s coumt #permutation
#pap
#ovele
sdelete Spmocpct
ddelete at #push
sdelete if #TRS50C
e et
#each
#each index
#empity?

#repeated_combination
#repeated_permutation
#replace

#reverse

d#reverse!
#reverse_each

#rindex

drotate

#rotate!

#sample

#select

#select!

#shuffle
#shuffle!
#5ize
#slice
#slice!
#50Tt
#sort!
#sort_by!

etake while
#to_a
#to_ary
#to_h

#to_s

#unig
#uniq!
#unshift
#values_at
#zp

d

Exemple Ruby 4.38 Exemples d’utilisation du module Enumerable.

?>> # La classe Array definit la methode each et

inclut le module Enumerable.

>> a = [10, 20, 30, 40]
=> [10, 20, 30, 40]

7> # Appartenance d’un element.
?> a.include? 20

= true

>> a.include? 999
=> false

7>

>> a.map! { [Ix|

=>

>>
=>

a
(10,

Application

20, 30, 40]

a.map { [x|
22, 32, 42]

(12,

a

Application

[100,

a

200,

X +

300,

2

400]

fonctionnelle.

Synonyme =

imperative

10 *x x }

(mutable)!

collect .

>> a
=> [10, 20, 30, 40]

?> # Application fonctionnelle.
?> a.map { Ix| x + 2 } # Synonyme = collect.
=> [12, 22, 32, 42]

>> a # a n’est pas modifie.
=> [10, 20, 30, 40]

?> # Application imperative (mutable)!
>> a.map! { Ix| 10 * x }
=> [100, 200, 300, 400]

>> a # a est modifie!
=> [100, 200, 300, 400]

7> # Selection/rejet d’elements selon un critere.
>> a.select { [x| x >= 300 }
=> [300, 400]

>> a.reject { |x| x >= 300 }
[100, 200]

I
\%

>> a
=> [100, 200, 300, 400]

I1 existe aussi des variantes imperatives/mutables:
select!

reject!

?> # Obtention du premier element qui satisfait un critere.
>> a
=> [100, 200, 300, 400]

>> a.find { Ix| x > 200 } # Synonyme = detect.
=> 300

>> a.find { Ix| x < 0 }
=> nil

>
?>
=>

>>
=>

Quantificateurs.

a.all? {
true

a.any? {
false

| x |

| x |

x > 0 }

x > 500 }

?>

400]

Reduction avec
a

[100, 200, 300,
a.reduce { Ix, yl

1000

a.reduce(:+)
1000

a.reduce(&:+)
1000

a.reduce(:x)
2400000000
a.reduce(999,

1999

c+

un

operateur

binaire.

X + y } # Synonyme

)

inject.

?> # Autres exemples de reduction , avec operateurs divers.

>> a.reduce(0) { |max, x| x > max 7 x : max }
?

I
3

>> a.map { Ix|l x / 10 }
?

I
\%
3

>> a.reduce([]) { la, x| a << x / 10 }
?

I
A\
3

>> a.reduce([]) { lar, x| [x] + ar + [x] }
?

Il
A\
3

?> # Autres exemples de reduction, avec operateurs
>> a.reduce(0) { |max, x| x > max 7 x : max }
=> 400

>> a.map { Ixl x / 10 }
=> [10, 20, 30, 40]

>> a.reduce([]) { la, x| a << x / 10 }
=> [10, 20, 30, 40]

>> a.reduce([]) { lar, x| [x] + ar + [x] }
=> [400, 300, 200, 100, 100, 200, 300, 400]

Note : Le a de a.reduce (défini au niveau global) est distinct
du a dans a << x (paramétre, donc identificateur stricte-
ment local au bloc).

divers.

> # Regroupement , dans un Hash , des elements
avec une meme valeur specifiee par le bloc.
>> a.group_by { Ix| x }
=> {100=>[100], 200=>[200], 300=>[300], 400=>[400]}

>> a.group_by { I|x| x >= 222 }
=> {false=>[100, 200], true=>[300, 400]}

>> a.group_by { Ix| x / 100 }
=> {1=>[100], 2=>[200], 3=>[300], 4=>[400]%}

>> a.group_by { Ix| x % 2 }
=> {0=>[100, 200, 300, 400]}

>> a.group_by { Ix| (x / 100) % 2 }
=> {1=>[100, 300], 0=>[200, 400]}

7> # <<Aplatissement >> des elements d’un tableau.
>> [10, 20, 30].flatten
=> [10, 20, 30]

>> [10, [20, 30], [40], [], [50], 60].flatten
=> [10, 20, 30, 40, 50, 60]

>> [10, [20, 301, ([[(40]1, [11, [[[5011]1, 60].flatten
=> [10, 20, 30, 40, 50, 60]

f.flat_map { Ix| ... } = f.map { Ix| ... }.flatten
>> [1, 2, 3].map { Inl [*1..n] %}
=> [[1], [1, 21, [1, 2, 3]]

>> [1, 2, 3].map { Inl| [*1..n] }.flatten
=> [1, 1, 2, 1, 2, 3]

>> [1, 2, 3].flat_map { Inl [*1..n] }
=> [1, 1, 1, 2, 3]

N

Exemple Ruby 4.39 Une mise en oeuvre, en Ruby, de quelques méthodes du mo-
dule Enumerable, méthodes qui utilisent la méthode each de la classe ayant exécuté

I’appel «include Enumerabley.

Mise en oeuvre possible , en Ruby,

du module Enumerable: on utilise

module Enumerable
def include?(elem)
each do |x|
return true 1if x == elem
end

false
end

def find
each do |x|
return x if yield(x)
end

nil
end

def reduce(val_initiale)

de quelques

*uniquement *

Autre argument 1implicite = bloc recevant
accum = val_initiale
each do |x|
accum = yield(accum, x)
end
accum
end

end

methodes

each!

deux

argument

Donnez une mise en oeuvre, dans un style fonctionnel, de la
méthode to_s de la classe Cours vue précédemment.

Exercice 4.7: Mise en oeuvre fonctionnelle de Cours#to_s.

4.17.2 Module Comparable

La figure ci-bas présente la liste des méthodes du
module Comparable, ¢’est-a-dire, les diverses métho-
des disponibles lorsque la méthode <=> est définie
par une classe et que le module Comparable est
inclus (avec include)!

Methods

H#

H<=

B

#=

#>=
#hetween?

Exemple Ruby 4.40 Tris avec Enumerable et <=>.

>> # Comparaison

7>
=>
>>
=>
>>
=>

29 <=> 33
-1

29 <=> 29
0

29 <=> 10
1

avec

l’operateur

’spaceship ’.

>>
>>

>>

>>

Tris.

a:
[29,

[29,
10,

a.sort

(10,

a.sort {

(10,

a.sort {

[44,

a.sort {

(10,

29,

29,

33,

33,

44 ,

33,

| x,
33,

| x,
29,

| x,
44 |

44 ,
33]

44]

y |
44]

y |
10]

y |
29]

33]
x <=>y }
-1 x (x <=>y) }
(x % 10) <=> (y % 10) }

Exemple Ruby 4.41 Comparaison et tri de Cours via les sigles.

$

cat cours-bis.rb

require_relative ’cours’

class Cours

include Comparable

def <=>(autre)
sigle <=> autre.sigle
end

end

if $0 == FILE

Definition de quelques cours.

inf1120 = Cours.new(:INF1120, ’Programmation I’)

inf1130 = Cours.new(:INF1130, ’Maths pour informaticien’
inf2120 = Cours.new(:INF2120, ’Programmation II’, inf112(
inf3105 = Cours.new(:INF3105, ’Str. de don.’, inf1130, i
cours = [inf3105, inf1120, inf2120, inf1130]

Quelques expressions

puts inf3105 < inf1120
puts inf2120 >= inf1130

cours.sort.each { |c| puts c }

end

$ ruby cours-bis.rb

false

true

< INF1120 ’Programmation I’ () >

<
<
<

INF1130 °’Maths pour informaticien’ () >
INF2120 ’Programmation II’ (INF1120) >

INF3105 ’Str. de don.’

(INF1130 INF2120) >

Que fait la méthode suivante? Quel nom plus significatif
pourrait-on lui donner?

class Array
def mystere(p)

reduce ([[], [J, []]) do |res, x
res[1 + (x <=> p)] << x

res
end
end
end

Exercice 4.8: Méthode mystere sur un Array.

4.18 Itérateurs définis par le program-
meur

Exemple Ruby 4.42 Une classe (simplifiée) pour des Ensembles.

class Ensemble
include Enumerable

Ensemble initialement vide (sans element).

def initialize

@elements = []
end
Ajout d’un element , sauf si deja present!

def <<(x)
@elements << x unless contient? x

self
end
def each
@elements.each do |x|
yield(x)
end

end

def cardinalite
count
end

def contient?(x)
include? x
end

def somme(val_initiale = 0)
reduce(val_initiale) { |Is, x| s + x }
end

def produit(val_initiale = 1)
reduce(val_initiale) { |s, x| s *x x }
end

def to_s
"{ " << map { Ix| x.to_s }.join(", ") << " }"
end
end

Pourquoi la méthode << retourne-t-elle self?
Que se passe-t-il si on omet self?

Exercice 4.9: Pourquoi la méthode << retourne-t-elle self?

alias :cardinalite :count
alias :contient? :include?

Exemple Ruby 4.43 Quelques expressions utilisant un objet Ensemble.

7>
7>

Cree un ensemble avec divers elements.
ens = Ensemble.new << 1 << 5 << 3

#<Ensemble :0x000000023¢c9298 @elements=[1,
ens.to_s

n{ 1’ 5’ 3 }n

L’operation << modifie 1l’objet.
ens << 2

#<Ensemble :0x000000023¢c9298 @elements=[1,

ens.to_s

n{ 1, 5’ 3, 2 }n
Appels a diverses methodes directement
ens.contient? 10
false
ens.contient? 2
true

ens.somme

11

ens . somme (33)

44

ens .produilt

30

5, 31>

5, 3, 2]>

definies par

>7> # Appels a des methodes definies par Enumerable.
>> ens.to_s
=> "{ 1, 5, 3, 2 }"

7> ens.map { |x| x *x 10 }
=> [10, 50, 30, 20]

>> ens.reject { [x| x.even? }
=> [1, 5, 3]

>> ens.find { |x| x >= 2 }

Remarque : Suppose que la méthode suivante est
définie dans Ensemble :

Supposons que dans la classe Array, on veuille définir les
méthodes map et select, et ce utilisant each ou each_index.
Quel code faudrait-il écrire?

class Array
def map

end
def select

end
end

Remarque : Conceptuellement, dans la vraie classe Array,
ces méthodes sont disponibles simplement parce que la classe
Array inclut le module Enumerable. En pratique, la mise
en oeuvre de ces méthodes pour la classe Array est faite de
facon spécifique a cette classe, pour des raisons d’efficacité
— notamment, méthodes écrites en C dans Ruby/MRI.

Exercice 4.10: Mises en oeuvre de map et select.

4.19 Expressions réguliéres et pattern-
matching

4.19.1 Les caractéres spéciaux

\ Supprime la signification spéciale du caractére qui suit
: Un caracteére arbitraire

Répétitions

* 0, 1 ou plusieurs occurrences du motif qui précede
? 0 ou 1 occurrence du motif qui précéde

+ 1 ou plusieurs occurrences du motif qui précede
{n} Exactement n occurrences du motif qui précede
{n,} Au moins n occurrences du motif qui précéde
{,n} Au plus n occurrences du motif qui précede
{n,m} | De n am occurrences du motif qui précede
Ancrages

- Début de la ligne

$ Fin de la ligne

Classes de caractéres

[...] | Un caractére qui fait partie de la classe

[~...] | Un caractére qui ne fait pas partie de la classe

\d Un nombre décimal

\D Tout sauf un nombre décimal

\s Un espace blanc (espace, tabulation, saut de ligne, etc.)
\S Tout sauf un espace blanc

\w Un caractére alphanumérique = a-zA-Z0-9_

\W Tout sauf un caractére alphanumérique

Autres caractéres spéciaux

mq Il ms | Choix entre motif m; ou motif mo
(...) | Création d’un groupe et d’une référence au groupe matché

\b Une frontiere de mot

\A Le début de la chaine

\z La toute fin de la chaine

\Z La fin de la chaine (ignore le saut de ligne qui suit)

Tableau 4.2: Les principaux caractéres spéciaux utilisés
dans les expressions réguliéres.

4.19.2 Les expressions réguliéres et la mé-
thode «="»

Exemple Ruby 4.44 Une expression réguliére est un objet de classe Regexp.

>> # Exemples de base.

>> /ab.*xzz$/.class
=> Regexp

>> re = /ab.*xzz$/
=> /Jab.*xzz$/

>> re.class

=> Regexp

>> re = Regexp.new("ab.*xzz$")
=> /ab.*xzz$/

>> re.class

=> Regexp

Autre facon .
>> re = Y%r{ab.*xzz$}
=> /ab.xzz$/

Exemple Ruby 4.45 Une expression réguliére peut étre utilisée dans une opération
de pattern-matching avec «="».

>> # Exemples de base (suite).

>> re = Regexp.new("ab.*xzz$")
=> /ab.*xzz$/

>> re =7 "abcdzzO0O0"
=> nil

>> re =" "abcdzz"

>> re.="("abcdzz")

=> 0
>> re =~ " .. .abcdzz"
=> 4
>> " . .abcdzz" =7 re

>>
Ca

puts "Ca matche" 1f re

matche

nil

re !7 "abcdzz00"
true

re |7 "abcdzz"

false

~

..abcdzz"

L'opérateur =~ est une méthode de la classe
Regexp, mais les appels suivants sont équivalents :

~

e re =" ch

ere.="(ch)

~

e re.=" ch

~

e ch =" re

4.19.3 Quelques caractéres spéciaux addi-
tionnels et quelques options

Exemple Ruby 4.46 Autres caractéres spéciaux des motifs et options.

>> # L’option i permet d’ignorer la casse .

>> /bc/ =~ "ABCD"
=> nil
>> /bc/i1 =~ "ABCD"

=> 1

>>

Un o
sauf

Un \s

/z.abc/
nil

/z.abc/m
2

/z\sabc/
2

E'S

a

ne matche pas*

vec 1’option

matche un saut

"xyz\nabc"

"xyz\nabc"

"xyz\nabc"

m .

de

un saut

ligne .

de

ligne ...

Exemple Ruby 4.47 L’option «x» permet de mieux formater des expressions
régulieres complexes.

>> motif = /(#{CODE_REGJ}) # Le code regional
- # Un tiret
(#{TEL}) # Le numero de tel.
/X
=> /((?-mix:\d{3})) # Le code regional
- # Un tiret
((?-mix:\d{3}-\d{4})) # Le numero de tel.
/X

>> motif .match "Tel.: 514-987-3000 ext. 8213"
=> #i<MatchData "514-987-3000" 1:"514" 2:"987-3000">

Exemple Ruby 4.48 Début/fin de chaine vs. début/fin de ligne.

>>

>>

Debut de 1ligne vs . debut
/~abc/ =" "xxx\nabc\n"

4

/\Aabc/ =" "xxx\nabc\n"
nil

Fin de 1ligne vs . fin de
/abc$/ =" "xxx\nabc\n"

4

/abc\z/ =" "xxx\nabc\n"
nil

/abc\n\z/ =" "xxx\nabc\n"
4

/abc\Z/ =" "xxx\nabc\n"

4

de chaine .

chaine .

Exemple Ruby 4.49 Autres exemples de groupes : avec vs. sans capture.

>> /(ab)(cd) (ef)/ =" "abcdef"
=> 0

>> puts $1, $2, $3
ab
cd

=> nil

>> /(ab)(?:cd)(ef)/ =~ "abcdef"
=> 0

>> puts $1, $2, $3

ab

ef

=> nil

>> /(ab) (?#cd) (ef)/ =~ "abcdef"

=> nil

>> /(ab) (?#cd) (ef)/ =~ "abef"
=> 0

Exemple Ruby 4.50 Autres exemples de pattern-matching : matche vorace vs.
paresseux.

>> /ab(c.*)d/ =~ "abcccddccddccd"

>> $1
=> "cccddccddcc"
>> /ab(c.*7)d/ =~ "abcccddccddccd"

>> $1
=> "ccc"

Exemple Ruby 4.51 Autre caractére spécial : frontiére de mot.

>> /abc/ =" "xabc"

>> /\babc/ =~ "xabc"
=> nil

>> /\babc/ =~ "x abc"

4.19.4 La classe MatchData

Exemple Ruby 4.52 Les méthodes d'un objet MatchData, objet retourné par
I'opération Regexp#match.

>> # Les objets MatchData.

>> CODE_REG = /\d{3}/
=> /\d{3}/

>> TEL = /\d{3}-\d{4}/
=> /\d{3}-\d{4}/

>> m = /(#{CODE_REG}) - (#{TEL})/
.match "FOO"
=> nil

>> m = /(#{CODE_REG}) - (#{TEL})/
.match "Tel.: 514-987-3000 ext. 8213"
=> #i<MatchData "514-987-3000" 1:"514" 2:"987-3000">

>> m[0..-1]

=> ["514-987-3000", "514", "987-3000"]
>> m.begin(0)..m.end (0)

=> 6..18

>> m.begin(1)..m.end (1)

=> 6..9

>> m.begin(2)..m.end (2)

=> 10..18

>> m.pre_match
=> "Tel.: "

>> m.post_match
=> " ext. 8213"

Exemple Ruby 4.53 Les groupes avec noms et les variables spéciales «$i»
définies par la méthode «="».

Des groupes avec noms explicites .

>> m = /(?<code_reg>#{CODE_REG}) - (7?<tel>#{TEL})/.
match "Tel.: 514-987-3000 ext. 8213"
=> #<MatchData "514-987-3000" code_reg:"514"
tel:"987-3000">

>> m[:code_reg]
=> "514™"

>> m.begin(:code_reg)
>> m[:tel]

=> "987-3000"

>> m.end(:tel)
=> 18

Les variables speciales $1, $2, etc.

1indiquent 1les groupes <captures .

>> if /(#{CODE_REG}) - (#{TEL})/ ="~
"Tel.: 514-987-3000 ext. 8213"

puts "code reg. = #{$1}; tel. = #{$21}"
end
code reg. = 514; tel. = 987-3000

=> nil

Qu’est-ce qui sera imprimé par les instructions p suivantes :

code_permanent = /(\w{4}) # NOMP
(\d{23}) # Annee
(\d{2}) # Mois
(\d{2}) # Jour
([~\DJ{2})
/%
m = code_permanent

.match "CP: DEFG11229988."

m[1]
m[5]
m.pre_match

oo ol o)

m.post_match

Exercice 4.11: Objet MatchData.

4.20 Interactions avec I’environnement

4.20.1 Arguments du programme

Exemple Ruby 4.54 Les arguments d’un programme Ruby et les variables
d’environnement.

$ cat argv.rb

#!/ usr /bin/env ruby

i =20

while arg = ARGV.shift do
puts "ARGV [#{i}] = ’#{arg}’ (#{arg.class})"
io+= 1

end

puts "ENV[’F00°’] = ’#{ENV[’F00’]3}’"
ENV[’F00’] = ’F00 argv.rb’
puts "----- n

$ echo $FO0OO

$./argv.rb

ENV[’F00 "]

) D)

$./argv.rb 1234 ’abc ""
712347 (String)
’abc "" def’ (String)
’abc’ (String)
’def’ (String)

ARGV [0]
ARGV [1]
ARGV [2]
ARGV [3]
ARGV [4]

ENV[’F00]

)))

(String)

) D)

$ export FO0O=xyz; ./argv.
’def’ (String)

ARGV [0]

ENV[’F00°]

$ FO0=123

ARGV [0]

ENV[’F00°]

7Xy27

./argv.rb def;
’def’ (String)

71237

def’ abc def "’"

rb def; echo $FOO

echo $FQOO

Soit le script suivant :

$ cat argv2.rb

#1/usr /bin/env ruby

ENV[’NB’].to_i.times do
puts ARGV [0] + ARGV [1]
end

Qu’est-ce qui sera imprimé par les appels suivants :

NB=3 ./argv2.rb 3 8
NB=2 ./argv2.rb [1, 2] [3]

unset NB; ./argv2.rb [1009, 229342] [334]

Exercice 4.12: Utilisation de ARGV et ENV.

4.20.2 Ecriture sur le flux de sortie stan-
dard : printf, puts, print et p

Exemple Ruby 4.55 Exemples d’utilisation de printf, sprintf et print.

>> printf "%d\n", "123"
123
=> nil

>> STDOUT.printf "%s\n", "123"
123
=> nil

>> printf "%d\n", "abc"
ArgumentError: invalid value for Integer ():

[...]
>> printf "%s\n", "abc"
abc
=> nil

>> printf "%d\n", [10, 20]
TypeError: can’t convert Array into Integer

[...]

>> printf "%s\n", [10, 20]
[10, 20]
=> nil

1 abc]

On peut aussi

generer wune chaine |,

sur le flux de

>> res = sprintft
=> n123\nn

>> res
=> n123\nn

utiliser

sortie .

”%d\n”,

un format

sans effet

123

pour

>> print 123
123=> nil

>> print "123"
123=> nil

>> print "123\n"
123

=> nil

Exemple Ruby 4.56 Ecriture d’un entier ou d’une chaine simple.

$ cat print-et-al.rb
#!/usr/bin/env ruby

def imprimer (methode, *valeurs)
puts "*x**x Avec #{methodel}:"
valeurs.each do |x|
send methode, x
puts "..."
end
end

imprimer (:puts, 123, "123")

puts
imprimer (:p, 123, "123")

$./print-et-al.rb
**x*x Avec puts:

123

123

**x*x Avec p:

123

1" 123“

Exemple Ruby 4.57 Ecriture d’un tableau d’entiers ou un tableau de chaines.

$ cat print-et-al.rb
#!/usr/bin/env ruby

def imprimer (methode, *valeurs)
puts "*x**x Avec #{methodel}:"
valeurs.each do |x|
send methode, x

puts "..."
end
end
imprimer (:puts, [123, 456], ["123", "456"])
puts
imprimer (:p, [123, 456], ["123", "456"])

$./print-et-al.rb
**x*x Avec puts:

123

456

123

456

*xx Avec p:
(123, 456]

[11123”, "456”]

Exemple Ruby 4.58 Ecriture d’un objet qui n’a pas de méthodes to_s et
inspect.

$ cat print-et-al.rb
#!/usr/bin/env ruby

def imprimer (methode, *valeurs)
puts "*x*xx Avec #{methodel}:"
valeurs.each do |x|
send methode, x
puts "..."
end
end

class Bar
def initialize(val); @val = val; end
end

imprimer (:puts, Bar.new(10))
puts
imprimer (:p, Bar.new(10))

$./print-et-al.rb
**x*x Avec puts:
#<Bar :0x000000015022a0 >

x*x*x Avec p:
#<Bar :0x00000001501£f80 @val=10>

Exemple Ruby 4.59 Ecriture d’un objet qui a des méthodes to_s et inspect.

$ cat print-et-al.rb
#!/usr/bin/env ruby

def imprimer (methode, *valeurs)
puts "*x*x Avec #{methodel}:"
valeurs.each do x|
send methode, X
puts "..."
end
end

class Foo
def initialize(val); @val = val; end

def to_s; "#{0@vall}"; end

def inspect; "#<Foo: val=#{Qvall}>"; end
end

imprimer (:puts, Foo.new(10))
puts
imprimer (:p, Foo.new(10))

$./print-et-al.rb
**x*x Avec puts:
10

x*xx Avec p:
#<Foo: val=10>

4.20.3 Manipulation de fichiers

Exemple Ruby 4.60 Différentes facon de lire et d’afficher sur stdout le contenu
d’un fichier texte.

$ cat cat.rb
#!/usr/bin/env ruby

nom_fichier = ARGV [0]

File.open(nom_fichier, "r") do |[fichl|
fich.each_line do |ligne|
puts ligne
end
end

$ cat foo.txt
abc def
123 456

XXX

$./cat.rb foo.txt
abc def
123 456

XXX

Exemple Ruby 4.60 Différentes facon de lire et d’afficher sur stdout le contenu
d’un fichier texte.

$ cat cat.rb
#!/usr/bin/env ruby

nom_fichier = ARGV [0]
fich = File.open(nom_fichier, "r")
fich.each_line do [ligne|

puts ligne

end

fich.close

$ cat foo.txt
abc def
123 456

XXX

$./cat.rb foo.txt
abc def
123 456

XXX

Exemple Ruby 4.60 Différentes facon de lire et d’afficher sur stdout le contenu
d’un fichier texte.

$ cat cat.rb
#!/usr/bin/env ruby

nom_fichier = ARGV [0]
I0.readlines(nom_fichier).each do |lignel]l

puts ligne
end

$ cat foo.txt
abc def
123 456

XXX

$./cat.rb foo.txt
abc def
123 456

XXX

Exemple Ruby 4.60 Différentes facon de lire et d’afficher sur stdout le contenu
d’un fichier texte.

$ cat cat.rb
#!/usr/bin/env ruby

nom_fichier = ARGV [0]

puts I0.readlines(nom_fichier)

$ cat foo.txt
abc def
123 456

XXX

$./cat.rb foo.txt
abc def
123 456

XXX

Meaning

Read-only, starts at beginning of file (default mode).

Write-only, truncates existing file
to zero length or creates a new file for writing.

Read-write, truncates existing file to zero length
or creates a new file for reading and writing.

Write-only, starts at end of file if file exists,
otherwise creates a new file for writing.

Read-write, starts at end of file if file exists,
otherwise creates a new file for reading and
writing.

Binary file mode (may appear with

any of the key letters listed above).

Suppresses EOL <-> CRLF conversion on Windows. And
sets external encoding to ASCII-8BIT unless explicitly
specified.

Text file mode (may appear with
any of the key letters listed above except "b").

Figure 4.5: Modes d’ouverture des fichiers (source : http:
//ruby-doc.org/core-2.0.0/I0.html).

http://ruby-doc.org/core-2.0.0/IO.html
http://ruby-doc.org/core-2.0.0/IO.html

Exemple Ruby 4.61 Différentes fagcon de lire et d’afficher sur stdout le con-
tenu d’un fichier texte, dont une fagon qui permet de recevoir les données par
l’intermédiaire du flux standard d’entrée.

$ cat cat.rb
#!/usr/bin/env ruby

nom_fichier = ARGV [0]

puts (nom_fichier 7 IO : STDIN).readlines nom_fichier

$ cat foo.txt
abc def
123 456

XXX

$./cat.rb foo.txt

abc def

123 456

XXX

$ cat foo.txt | ./cat.rb
abc def

123 456

XXX

4.20.4 Exécution de commandes

Exemple Ruby 4.62 Exécution de commandes externes avec backticks ou %x{. ..}

>> # Execution avec backticks.
>> ext = ’rb’
=> "rp"

>> puts “1ls [elx*.#{ext}"
ensemble.rb
ensemble_spec.rb
entrelacement.rb

=> nil

>> n#{$?}n
=> "pid 29829 exit 0"

>> # Execution avec %x{...3}.
>> puts %x{ 1ls [elx*.#{ext} }
ensemble.rb

ensemble_spec.rb
entrelacement.rb

=> nil

>> $7
=> #<Process::Status: pid 30019 exit 0>

>>
>>

1s:

Emission sur

stderr

%x{ 1ls www_xx_z 1}

vs .

stdout

impossible d’accéder a www_XX_z:

Aucun fichier ou dossier de ce type

nn

n#$?u
"pid 29831 exit

2I|

Vue de Pintériear

Figure 4.6: Deux points de vue sur les flux associés a un

processus.

Exemple Ruby 4.63 Exécution de commandes externes avec Open3.popen3.

$ cat commandes2.rb

require ’open3d’

Open3.popen3("wc -1lw") do [stdin, stdout, stderr|
stdin.puts ["abc def", "", "1 2 3"]
stdin.close

puts "--stdout--"
puts stdout.readlines
puts "--stderr--"
puts stderr.readlines
puts

end

$./commandes2.rb
--stdout --

3 5
--stderr --

Exemple Ruby 4.64 Exécution de commandes externes avec Open3.popen3.

$ cat commandes3.rb
require ’open3d’

Open3.popen3("wc -1lw xsfdf.txt") do |_, out, err

puts "--out--"
puts out.readlines
puts "--err--"
puts err.readlines
puts

end

$./commandes3.rb

--out --

--err--

wc: xsfdf.txt: Aucun fichier ou dossier de ce type

4.21 Traitement des exceptions

4.21.1 Classe Exception et sous-classes stan-
dards

NoMemoryError
ScriptError
LoadError
NotImplementedError
SyntaxError
SignalException
Interrupt
StandardError -- default for rescue
ArgumentError
IndexError
StopIteration
IOError
EQOFError
LocalJumpError
NameError
NoMethodError
RangeError
FloatDomainError
RegexpError
RuntimeError -- default for raise
SecurityError
SystemCallError
Errno: :*
SystemStackError
ThreadError
TypeError
ZeroDivisionError
SystemExit
fatal -- impossible to rescue

Figure 4.7: Hiérarchie des classes/sous-classes standards
pour les exceptions (source : http://ruby-doc.org/
core-2.1.1/Exception.html).

http://ruby-doc.org/core-2.1.1/Exception.html
http://ruby-doc.org/core-2.1.1/Exception.html

4.21.2 Attraper et traiter une exception

Exemple Ruby 4.65 Une méthode div qui attrape et traite diverses exceptions.

>> def div(x, y)
begin
z =x/y
rescue ZeroDivisionError => e
puts "*x*%x Division par 0 (#{e})"
p e.backtrace
nil
rescue Exception => e
puts "*x*xx Erreur = ’#{e.inspectl}’"
end
end
=> :div

>> div 3, O

x Division par 0 (divided by O0)

["(irb):4:4in /",

"(irb):4:in ’div’", "(irb):14:in ’irb_binding’",
"/home/tremblay/.rvm/rubies/ruby-2.1.4/1ib/ruby/2.1.0/irb/workspace

"/home/tremblay/.rvm/rubies/ruby-2.1.4/bin/irb:11:in ’<main>’"]
=> nil

>> div 3, nil

**x*x Erreur = ’#<TypeError: nil can’t be coerced into Fixnum>’
=> nil

>> div nil, 3

*x%x Erreur = ’#<NoMethodError: undefined method ’/’ for nil:NilClass>’
=> nil

. T

Exemple Ruby 4.66 Une méthode traiter_fichier qui attrape et traite des
exceptions et qui s’assure de restaurer le systéme dans un bon état, quune exception
soit signalée ou non — dans ce cas-ci, en s’assurant de fermer le descripteur du fichier

ayant été ouvert.

>> def traiter_fichier(fich)
f File.open(fich)
begin

traiter_contenu_fichier(f.readlines)

puts
rescue
puts
ensure

Exception => e

"xxx Erreur ‘#4{e.

f.close
end
f.inspect # Pour voir
end

ctraiter_fichier

>

"foo.txt"
+++ Traitement termine
=> "#<File:foo.txt (closed)>"

>> traiter_fichier(

"bar . txt"
*xx Erreur "#<RuntimeError:
=> "#<File:bar.txt (closed)>"

>> traiter_fichier(

l’etat final

"+++ Traitement termine"

inspect}’"

)

Erreur dans traiter_contenu_f]

Exemple Ruby 4.67 La méthode File.open, lorsqu’appelée avec un bloc, assure
que le fichier sera fermé, qu’une exception survienne ou pas

>> def traiter_fichier(fich)
le_f = nil
File.open(fich) do |f]
le_f = f
begin
traiter_contenu_fichier(f.preadlines)
puts "+++ Traitement termine"
rescue Exception => e

puts "*x*x Erreur = ’#{e.inspectl}’"
end
end
le_f .inspect
end

=> :traiter_fichier

>> traiter_fichier ("bar.txt")
**xx Erreur = ’#<RuntimeError: Erreur dans traiter_contenu_fi

=> "#<File:bar.txt (closed)>"

4.21.3 Signaler une exception

Exemple Ruby 4.68 Exemples illustrant l'instruction fail, appelée avec 0, 1 ou
2 arguments.

>> class MonException < RuntimeError
def initialize(msg = nil)
super
end
end
=> :initialize

>> def executer

begin
yield
rescue Exception => e
"classe = #{e.class}; message = ’#{e.messagel}’"
end
end

=> :.executer

>> executer { fail 7}

=> "classe = RuntimeError; message = ’’"

>> executer { fail "Une erreur!" }

- " — ; . - | on
> "classe RuntimeError; message Une erreur!

>> executer { fail MonException }

=> "classe = MonException; message = ’MonException’"

>> executer { fail MonException, "Probleme!!" }
=> "classe = MonException; message = ’Probleme!!’"

Exemple Ruby 4.69 Exemples illustrant I'instruction raise utilisée pour resig-
naler une exception.

>> def executer
begin
yield
rescue Exception => e
"classe = #{e.class}; message = ’#{e.message}’"
end
end
=> .executer

>> executer { fail MonException, "Probleme!!" }
classe = MonException; message = ’Probleme!!’
MonException: Probleme!!
from (irb):16:in ’block in irb_binding’
from (irb):9:in ’executer’
from (irb):16
from /home/tremblay/.rvm/rubies/ruby-2.1.4/bir

4.22 Autres éléments de Ruby

4.22.1 L’opérateur préfixe «*»

Exemple Ruby 4.70 Utilisation de l'opérateur «x» (splat) devant un objet —
Range, scalaire ou Range — dans une expression.

>> # L’operateur "splat" (*) devant un tableau "enleve" un
tableau, i.e., integre directement les elements du tab:

que le tableau 1lui-meme.

>> a = [98, 99]
=> [98, 99]

>> [1, [10, 20], a, 1000]
=> [1, [10, 20], [98, 99], 1000]

>> [1, *[10, 20], *a, 1000]
=> [1, 10, 20, 98, 99, 1000]

>> # L’operateur splat (*) devant un scalaire ou un Range g
tableau avec 1l’element ou les elements 1indiques ... maic

n’importe ou.
>> a = x10
>> a = x(1..10)
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> (1..10).to_a
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Mais ...

>> *x(1..10)

SyntaxError: (irb):41: syntax error, unexpected ’\n’,
expecting :: or [’ or ’.°

>> %10

SyntaxError: (irb):33: syntax error, unexpected ’\n’,
expecting:: or [’ or ’.’

Exemple Ruby 4.71 Utilisation de l'opérateur «*» du coté gauche d’'une affecta-
tion paralléle (multiple).

>> # Dans la partie gauche d’une affectation parallele, un
<<deconstruire >> un tableau. Dans ce cas, la variable
prefixee avec * doit etre unique et va denoter un sous -
d’elements.

>> a, b, ¢ = [10, 20, 30, 40]
=> [10, 20, 30, 40]

>> puts "a = #{a}t; b = #{b}; c = #{c}"
a = 10; b = 20; c¢c = 30

=> nil

>> a, *b, ¢ = [10, 20, 30, 40]

=> [10, 20, 30, 40]

>> puts "a = #{a}; b = #{b}; c = #{c}"

a = 10; b = [20, 30]; c = 40
=> nil

>> premier, *derniers = [10, 20, 30]
=> [10, 20, 30]

>> puts "premier = #{premier}; derniers = #{derniersl}"
premier = 10; derniers = [20, 30]

=> nil

>> *xpremiers, dernier = [10, 20, 30]

=> [10, 20, 30]

>> puts "premiers = #{premiers}; dernier = #{dernier}"
premiers = [10, 20]; dernier = 30
=> nil

Exemple Ruby 4.72 Utilisation de «*» dans la spécification de paramétres de
méthodes : 'effet est semblable a des affectations paralléles.

>> # L’utilisation de * s’applique aussi aux parametres
formels d’une methode , ainsi qu’aux arguments effectif:
(expressions passees en argument).
>> def foo(x, *args)
puts "x = #{x}"
args.each_index { |k| puts "args[#{k}] = #{args[k]}" }
end
=> :foo

>> foo(10)

x = 10

=> []

>> foo(10, 20)
x = 10

args [0] = 20

=> [20]

>> foo(10, 20, 30)
x = 10

args [0] = 20

args [1] = 30

=> [20, 30]

>> foo([10, 20, 30])
x = [10, 20, 30]

=> []

>> foo(*[10, 20, 30])
x = 10

args [0] = 20

args [1] = 30

=> [20, 30]

4.22.2 L’opérateur préfixe «&» pour la ma-
nipulation de blocs

Exemple Ruby 4.73 Utilisation de 'opérateur «&» pour rendre explicite un bloc
comme paramétre d’une méthode.

>> L’operateur prefixe & utilise devant le dernier paramef

rend explicite le bloc transmis a 1’appel de 1la methode

Ce parametre est alors un objet Proc pouvant

H H OH H

etre execute avec call.

>> def call_yield(x, &bloc)
return x unless block_given?

[bloc.class, bloc.call(x), yield(x)]
end
=> :call_yield

>> call_yield(99)
=> 99

>> call_yield(99) { Ix| x + 10 }
=> [Proc, 109, 109]

Exemple Ruby 4.74 Utilisation de l'opérateur «&» pour transformer un objet

lambda ou Symbole en bloc.

explicitement

additionnel

lambda expression
comme
en plus

es).

>> # L’operateur prefixe & devant une
transforme 1’objet Proc en un bloc.
Ce Dbloc peut alors transmis
dernier argument (argument
des arguments non blocs explicit
>> double = lambda { Ix| 2 *x x }

#<Proc:0x000000028b09500 (irb):24 (

call_yield(2) {
[Proc, 4, 4]

x| 2 *x x }

>> call_yield(2) double

SyntaxError: (irb):26: syntax error,

>> call_yield(2) &double

TypeError: Proc can’t be coerced into

>> call_yield(2, &double)
=> [Proc, 4, 4]

lambda) >

unexpected tIDENTIFIER

Fixnum

>> Cette transformation s’applique meme lorsque le bloc
est dimplicite.

Et elle s’applique aussi aux symboles,

H O H O H H

via un appel implicite a to_proc.

>> def yield_un_arg(x)
yield(x)
end
=> :yield_un_arg

>> yield_un_arg(24, &double)
=> 48

>> yield_un_arg(24, &:even?)

=> true

>> # :s.to_proc == Proc.new { |o| o.s } (...ou presque)
>> yield_un_arg(24, &:even?.to_proc)

=> true

>> yield_un_arg(24, &:-)
ArgumentError: wrong number of arguments (0 for 1)

>> yield_un_arg(24, &:-@) # Voir section suivante.
=> -24

4.22.3 Les opérateurs (préfixes) unaires

Exemple Ruby 4.75 Opérateurs (préfixes) unaires définis par le programmeur.

>> class Foo
def +(autre
puts '"self
end

—

#{self}; autre = #{autrel}"

def +0@
puts '"self
end
end
=> :+0

#{self}"

>> foo = Foo.new
=> #<Fo00:0x000000019910c8>

>> foo + 10

self = #<Fo00:0x000000019910c8>; autre = 10
=> nil

>> + foo

self = #<Foo0:0x000000019910c8>
=> nil

4.22.4 Un mini irb en une seule ligne

$ ruby -n -e ’p eval($_)’
10 + 30

40
ra.class
Symbol
puts "10"
10

nil

"D

4.22.5 La méthode tap

tap {Ix] ...} -> obj

Yields self to the block, and the return =
of this method 1is to "tap 1nto" a method
operations on 1ntermediate results withil

class (Object
def tap
yield self
self
end
end

$ cat tap.rb

p (1..10)
.tap { Ix| puts "Original: #{x}"
.Tto_a
.tap { |x| puts "Array: #{x}" }
.select { |x| x.even? }
.tap { Ix| puts "Paires: #{x}" }
.map { Ix| x * x }
.tap { Ix| puts "Carres: #{x}" }
$ ruby tap.rb
Original: 1..10
Array: [1, 2, 3, 4, 5, 6, 7, 8, 9,
Paires: [2, 4, 6, 8, 10]
Carres: [4, 16, 36, 64, 100]
(4, 16, 36, 64, 100]

¥

4.A Installation de Ruby sur votre
machine

1. Obtenir la clé pour rvm et obtenir rvm :

$ gpg --keyserver hkp://keys.gnupg.net\
--recv-keys 409B6B1796C275462A1703113804BB82D39DC
$ curl -sSL https://get.rvm.io | bash -s stable

2. Activer les fonctions associées a rvm :

$ source “/.rvm/scripts/rvm

3. Pour la programmation paralléle avec la biblio-
théque PRuby (cours INF5171/INF7235), il faut
installer jruby — rvm list permet de vérifier
qu’il est bien installé, puis il faut ensuite in-
staller le gem pruby :

$ rvm install jruby-1.7
$ rvm list
$ wget http://www.labunix.uqam.ca/“tremblay/INF7235/pru

$ gem install pruby-0.3.0.gem

Important : Il ne faut pas installer jruby-9
— pruby n’'a pas encore été adapté pour cette
Verslon.

4. Installer le gem bundler :
$ gem install bundler

4.B Le cadre de tests unitaires MiniTest

4.B.1 Tests unitaires et cadres de tests

Niveaux de tests
Différents niveaux de tests :

e Tests unitaires
e Tests d'intégration
e Tests de systeme

e Tests d’acceptation

Dans ce qui suit : tests unitaires.

Pratique professionnelle et tests

«code source = programme -+ tests»

Approches agiles et «développement dirigé par les
testsy
e Les tests doivent étre écrits avant le code!

e Never write a line of functional code with-
out a broken test case. (K. Beck)

Cadres de tests

[1 faut que les tests puissent étre exécutés fréquem-
ment et de facon automatique

Outils qui permettent d’automatiser I'exécution des
tests unitaires = cadres de tests

Caractéristique= on utilise des assertions :

assertEquals (expectedResult, value)
assertEquals (expectedResult, value, precision)
assertTrue (booleanExpression)

assertNotNull(reference)

etc.

Donc : aucun résultat n’est produit si le test ne
détecte pas d’erreur.

4.B.2 Le cadre de tests MiniTest
Test dans le style «JUnit» :

class TestFoo < MiniTest::Unit::TestCase
def setup
©@foo = Foo.new
end

def test_bar_est_initialement_0
assert_equal 0, Q@foo.bar

end

end

Test dans le style «RSpec» :

describe Foo do
describe "#bar" do
before do
@foo = Foo.new
end

1t "retourne une taille
@foo.bar.must_equal O
end

end

end

nulle lorsque

4.B.3 Des spécifications MiniTest pour la
classe Ensemble

Exemple Ruby 4.76 Une suite de tests pour la classe Ensemble (partie 1)

require ’minitest/autorun’
require ’minitest/spec’

require_relative ’ensemble’

describe Ensemble do
before do
@ens = Ensemble.new
end

describe ’#contient?’ do
it "retourne faux quand un element n’est pas present'" d«
refute Q@ens.contient? 10
end

it "retourne vrai apres qu’un element ait ete ajoute" d«
refute Qens.contient? 10
@ens << 10
assert Q@ens.contient? 10
end
end

Exemple Ruby 4.77 Une suite de tests pour la classe Ensemble (partie 2)

#

describe ’#<<’ do
it "ajoute un element lorsque pas deja present" do
@ens << 10
assert Q@ens.contient? 10
end

it "laisse l’element ajoute lorsque deja present" do
@ens << 10
assert Q@ens.contient? 10

@ens << 10

assert @Qens.contient? 10
end

it "retourne self ce qui permet de chainer des operatior

res = Qens << 10
res.must_be_same_as @Qens
end

end

Exemple Ruby 4.78 Une suite de tests pour la classe Ensemble (partie 3)

#

describe ’#cardinalite’ do
it "retourne 0 lorsque vide" do
@ens.cardinalite.must_equal O
end

it "retourne 1 lorsqu’un seul et meme element est ajoute
@ens << 1
@ens.cardinalite.must_equal 1

G@ens << 1 <K 1 < 1
@ens.cardinalite.must_equal 1
end

it "retourne le nombre d’elements distincts peu importe
@ens << 1 << 1 << 1 << 2 << 2 <K<K 1 <K< 2
@ens.cardinalite.must_equal 2
end
end
end

res.must_be _same _as Qens —

assert res.equal? Qens

Q@ens.cardinalite.must_equal 0 —

assert Qens.cardinalite == 0
assert_equal 0O, Qens.cardinalite

Exemple Ruby 4.79 Des exemples d’exécution de la suite de tests pour la classe

Ensemble.

Execution ordinaire

$ ruby ensemble_spec.rb
Run options: --seed 43434

Running:

Finished in 0.001556s, 5140.4367 runs/s, 7068.1005 assertions/s.

8 runs, 11 assertions, O failures, O errors, O skips

Execution ’verbeuse’

$ ruby ensemble_spec.rb -v
Run options: -v --seed 18033

Running:

Ensemble:
Ensemble:
Ensemble:
Ensemble:
Ensemble:
Ensemble:
Ensemble:

Ensemble:

(#<<#test_0003_retourne self ce qui permet de chainer des operations = 0.00
(#<<#test_0001_ajoute un element lorsque pas deja present = 0.00 s = .
(#<<#test_0002_laisse 1l’element ajoute lorsque deja present = 0.00 s =
:#contient?#test_0001_retourne faux quand un element n’est pas present = 0.(
:#contient7#test_0002_retourne vrai apres qu’un element ait ete ajoute = 0.(

:#cardinalite#test_0001_retourne O lorsque vide = 0.00 s = .
:#cardinalite#test_0002_retourne 1 lorsqu’un seul et meme element est ajoute

1 ou plusieurs fois = 0.00 s = .

:#cardinalite#test_0003_retourne le nombre d’elements distincts peu importe’

le nombre de fois ajoutes = 0.00 s = .

Finished in 0.001686s, 4745.7382 runs/s, 6525.3900 assertions/s.

8 runs, 11 assertions, O failures, O errors, O skips

Exemple Ruby 4.80 Un exemple d’exécution de la suite de tests pour la classe
Ensemble avec des échecs — la méthode cardinalite retourne toujours 0.

Execution avec echecs

$ ruby ensemble_spec.rb
Run options: --seed 7910

Running:
..FF. ..

Finished in 0.001950s, 4101.7438 runs/s, 5127.1797 assertions/s.
1) Failure:

Ensemble: :#cardinalite#test_0002_retourne 1 lorsqu’un seul et meme element est ajout:
1 ou plusieurs fois [ensemble_spec.rb:54]:

Expected: 1
Actual: O
2) Failure:

Ensemble: :#cardinalite#test_0003_retourne le nombre d’elements distincts peu importe'
le nombre de fois ajoutes [ensemble_spec.rb:62]:
Expected: 2
Actual: O

8 runs, 10 assertions, 2 failures, O errors, O skips

Methods

#must_be
#must_be_close_fo
#must_be_empty
#must_be_instance_of
#must be kind of
#must be nil

#must be same as
#must be silent
#must be within delta
#must_be_within_epsilon
#must_equal
#rmust_include
#must_match
#must_oufput

#must raise
#must_respond_to
#must_send

#rmust throw

#wont be
#rwont_be_close_to
#wont_be_empty
#wont_be instance of
#wont_be_kind_of
#rwont_be_mil

#wont_be same as
#wont_be_within_delta
#wont_be_within_epsilon
#wont_equal
#wont_include
#rwont_match
#wont_respond_to

Figure 4.8: La liste des expectations disponibles dans
MiniTest. Source : http://ruby-doc.org/stdlib-2.
1.0/libdoc/minitest/rdoc/MiniTest/Expectations.
html.

http://ruby-doc.org/stdlib-2.1.0/libdoc/minitest/rdoc/MiniTest/Expectations.html
http://ruby-doc.org/stdlib-2.1.0/libdoc/minitest/rdoc/MiniTest/Expectations.html
http://ruby-doc.org/stdlib-2.1.0/libdoc/minitest/rdoc/MiniTest/Expectations.html

Exemple Ruby 4.81 Quelques autres méthodes de MiniTest — dans le style avec
expectations.

gem ’minitest’
require ’minitest/autorun’
require ’minitest/spec’

describe Array do
let (:vide) { Array.new }

before do

@singleton_10 = Array.new << 10
end

describe ".new'" do
it "cree un tableau vide lorsque sans argument" do
vide.must_be :empty?
end
end

describe "#push" do

it "ajoute un element, lequel devient inclu" do
Osingleton_10.must_include 10
end
end

describe "#size" do
it "retourne 0 lorsque vide" do
vide.size .must_equal O
end

it "retourne 0 lorsque vide (bis)" do
vide.size.must_be :==, 0
end

it "retourne > O lorsque non vide" do
Osingleton_10.size.must_be :>, O
end
end

describe "#to_s" do
it "retourne ’[]’ lorsque vide" do
vide.to_s
.must_equal "[]"
end

it "retourne les elements separes par des virgules" do
(vide << 10 << 20 << 30).to_s
.must_equal "[10, 20, 30]"
end

it "retourne les elements separes par des virgules (bis.
a = vide << 10 << 20 << 30
virgule = /\s*,\sx*/

a.to_s
.must_match
/~"\[\s*x10#{virgule}20#{virgule}30\s*\]$/
end
end
end

4.C Reégles de style Ruby

Pourquoi des conventions sur le style de program-
mation sont importantes :

e 80% of the lifetime cost of a piece of soft-
ware goes to maintenance.

e Hardly any software is maintained for its
whole life by the original author.

e Code conventions improve the readability
of the software, allowing engineers to
understand new code more quickly
and thoroughly.

http: //www. oracle. com/ technetwork/ java/ tndex-135089. hitml

http://www.oracle.com/technetwork/java/index-135089.html

Une présentation assez compléte des regles spéci-
fiques a Ruby :
https://github.com/styleguide/ruby

https://github.com/styleguide/ruby

Principales régles que vous devriez respecter :

e Utilisation du snake case vs. CamelCase :

— NomDeClasse
— NOM_DE_CONSTANTE
— nom_de_methode

—nom_de_parametre_ou_variable

e Indentation avec des (2) espaces blancs seule-
ment, pas de caractéres de tabulation

e Jamais de blancs a la fin d'une ligne.

e Des blancs autour des opérateurs binaires (y
compris =), apres les virgules, les deux points et
les points-virgules, autour des { et avant les }.

e Pas de blanc avant ou aprés | et |, ou apres !.

e Jamais de then pour une instruction if /unless
et jamais de parenthéses autour des con-
ditions :

NON # (0K
if (condition) then if condition
end end

e Pas de parenthéses si aucun argument :

def une_methode_sans_arg

end

def une_methode_avec_args(argl, ..., argk)
end

NON
une_methode_sans_arg ()

0K
une_methode_sans_arg

e Opérateur ternaire 7: seulement pour une
expression sur une seule ligne.

e On utilise une garde if/unless quand il y a
une seule instruction simple/courte :

NON # OK

if condition une_instr if condition
une_instr

end

e On utilise unless si la condition est négative :

NON # 0K
if lexpr unless expr
res res
end end
NON # 0K
unless expr if expr
si faux 81 vrai
else else
si vrai 81 faux

end end

e Pour les blocs, on utilise {...} lorsque le corps
peut s’écrire sur une seule ligne.

Autrement, on utilise do ... end.
NON # OK
col.map do [x| ... end col.map { I[x|
col.map { Ixl] col.map do |x|

} end

e On utilise return seulement pour retourner au
milieu d’une méthode :

NON # 0K
if expr if expr
return res res
else else
return autre_res autre_res
end end
NON # OK
def m_rec(...) def m_rec(...)
if expr return res_base if expr
return res_base
else
res_rec
return res_rec end
end

end

e Dans une classe C, on utilise def self.m pour
définir une méthode de classe m.

e Pour les objets de classe Hash, on utilise des
Symbols comme clés :

hash = {
:clel => defnl,
:cle2 => defn2,

:clek => defnk

Quelques remarques additionnelles concernant les
exemples :

e Des espaces sont mis autour des parentheses des
définitions de méthodes :

Style suggere dans le guide.
def methode(a, b, c)

end

Style dans le materiel de cours

def methode(a, b, c)

end

Quelques régles additionnelles

Les régles qui suivent sont basées sur des erreurs
typiques rencontrées dans les devoirs.

e LLes méthodes map, select, reject doivent
étre utilisées pour produire une nouvelle
collection, et non pour des effets de bord.

NON
res = []
a.map { x| res << foo(x) }

#+ OK
a.map { |x| foo(x) 1}

e On utilise une instruction avec garde seulement
si I'instruction s’écrit sur une seule ligne :

instr 1f condition # 0Kk si dinstr cour
Si 'instruction est trop longue, alors on utilise
une instruction if :

1f condition
instruction
end

e [l faut éviter les effets de bord dans les gardes :

puts x 1f x = ARGV.shift # NON !

Dans certains cas simples, on peut accepter une
affectation en début d’une instruction

1f x = ARGV.shift
puts X
end

e On utilise une instruction avec garde seulement
si le cas complémentaire n’a pas besoin
d’étre traité :
instrl 1f condition
instr?2 unless condition # wow

Autrement, on utilise plutot une instruction if

1f condition
instrl
else
instr?2
end

e Il est correct d’enchainer plusieurs appels de
méthodes. :

0K seulement si *trés* court
res = a.select { Ix| ... }.map { Ix|] ... }.sort.join

Preferable lorsque plusieurs appels: plus facile
a lire, a modifier,

pour ajouter un autre appel, etc.
0K
res = a.select { Ix| ... }

.map { Ix| ... %

.sort

.join

e Dans le bloc transmis a reduce, la mise a jour

de 'accumulateur se fait implicitement :
NON

(1..n).reduce(1.0) { |res, x| x == 0 ? res : res /= x }
0K
(1..n).reduce(1.0) { |res, x| x == 0 ? res : res / x 1}

Note : La 1°¢ expression fonctionne parce que :

res /= X # est la meme chose
res = res / X

que

et parce que
(res = v) == v

4. Méthodes attr_reader et attr_writer

Exemple Ruby 4.82 Une définition des méthodes attr_reader et attr_writer.

class Class
def attr_reader(attr)
self.class_eval "
def #{attr}
o#{attr}
end

n

end

def attr_writer (attr)
self.class_eval "
def #{attr}t=(v)
e#{attr} = v
end
end
end

class Foo
attr_reader :bar
attr_writer :bar

def initialize
self .bar = 0
end
end

foo = Foo.new
foo.bar += 3

Exemple Ruby 4.83 Une autre définition des méthodes attr_reader et
attr_writer.

class Class
def attr_reader_(attr)
self.class_eval do
define_method attr do
instance_variable_get "Q@#{attr}"
end
end
end

def attr_writer_(attr)
self.class_eval do
define_method "#{attr}=" do |v|
instance_variable_set ("@#{attr}t", v)
end
end
end
end

class Foo
attr_reader :bar
attr_writer :bar

def initialize
self.bar = 0
end
end

4.FE Interprétation vs. compilation

Soit 'affirmation suivante : «Ruby est un langage inter-
prétey.

Cette afirmation est-elle vraie ou fausse?

Exercice 4.13: Ruby, un langage interprété?

Pourquoi les performances d'un programme Ruby sont-elles
généralement moins bonnes (programme plus lent @) que
celles d’'un programme Java?

Exercice 4.14: Performances de Ruby.

