Recueil de montages

Amplificateur opérationnel

version 1.0 09/05/2010 comporte actuellement 58 montages

A. Geltzenlichter

electronique.aop@gmail.com

Introduction

Le présent recueil est un résumé condensé au format PDF des montages proposé sur le site <u>electronique.aop.free.fr.</u>

Il s'adresse aussi bien aux étudiants, aux électroniciens, aux ingénieurs qu'à tous les passionnés d'électronique!

Notez bien qu'il ne s'agit que d'un aide-mémoire théorique, aucun montage n'indique de valeurs précises pour les composants. Il est conseiller de visualiser les démonstrations sur le site (via le lien proposé à chaque montage) afin de bien assimiler le fonctionnement des circuits.

De nombreux cours sur l'amplificateur opérationnel sont disponibles sur internet, dont <u>celui-là</u>. De même que de nombreux ouvrages sur l'électronique traitent également du sujet, n'hésitez donc pas à diversifier vos sources d'informations. En ce qui concerne les filtres actifs, il est conseillé aux non-initiés de lire au préalable <u>ce document</u> afin d'être à jour avec les concepts de fonction de transfert, de fréquence de coupure, de phase ainsi que de coefficient d'amortissement / facteur de qualité.

Conventions mises en place dans ce document :

- → Tous les amplificateurs opérationnels sont considérés comme idéaux (sauf mention contraire), autrement dit que les courants d'entrée i+ et i-sont nuls (= impédances d'entrée de l'AOP infinies) et que leurs caractéristiques ne varient pas avec la fréquence.
- → L'alimentation symétrique des AOP n'est pas représentée pour alléger les schémas (sauf exceptions).
- → Les schémas donnés ici sont des schémas théoriques, aucune valeur de composant n'est donnée, c'est à vous d'adapter les montages qui vous intéresse aux utilisations que vous voulez en faire.
- → Les AOP sont de préférence représentés en notation ANSI.
- Les fonctions de transfert sont notées $H(j\omega)$, avec $|H(j\omega)|$ son module. La fréquence de coupure est notée f_c (pour rappel, $f_c = \frac{\omega_c}{2\pi}$), le coefficient d'amortissement est noté \mathbf{m} (pour rappel, $Q = \frac{1}{2m}$ avec \mathbf{Q} le facteur de qualité).

Sommaire

Partie 1 – Montages à AOP en régime linéaire indépendants de la fréquence :

- → Amplificateurs
- → Générateurs
- → Fonctions mathématiques
- → Sources de tension
- → Montages divers

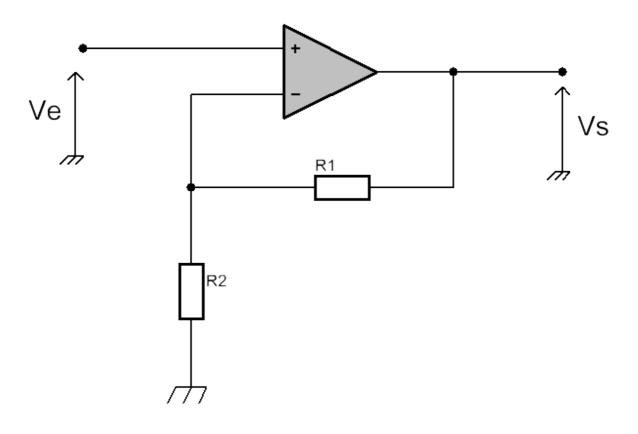
Partie 2 – Montages à AOP en régime linéaire dépendants de la fréquence :

- → Simulateurs d'impédance
- → Correcteurs
- → Filtres actifs

Partie 3 - Montages à AOP en régime non linéaire :

- → Comparateurs
- → Redresseurs sans seuil
- → Générateurs de fonctions

http://electronique.aop.free.fr/							

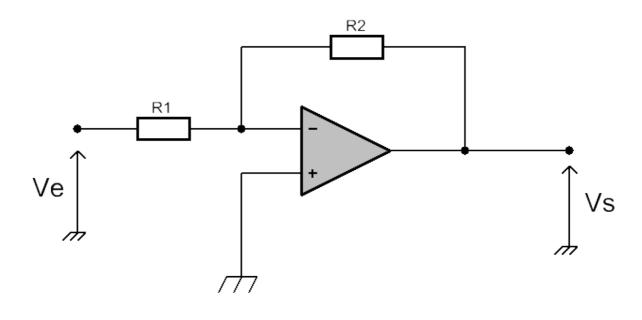

PARTIE 1

Montages à régime linéaire indépendants de la fréquence :

\rightarrow	Amplificateurs:	Page:
	→ Amplificateur non-inverseur	
	→ Amplificateur inverseur	<u>8</u> <u>9</u>
	→ Amplificateur inverseur à gain renforcé	<u>10</u>
	→ Inverseur/Non-Inverseur	<u>11</u>
	→ Amplificateur d'instrumentation	<u>12</u>
	→ Amplificateur à sorties symétriques	<u>13</u>
	→ Amplificateur à contrôle automatique de gain	<u>14</u>
\rightarrow	Générateurs :	
	→ Convertisseur tension/courant simple	<u>16</u>
	→ Convertisseur tension/courant amélioré	<u>17</u>
	→ Source de courant	<u>18</u>
\rightarrow	Fonctions mathématiques:	
	→ Sommateur inverseur	<u>19</u>
	→ Sommateur non-inverseur	<u>20</u>
	→ Soustracteur simple	<u>21</u>
	→ Soustracteur amélioré	<u>22</u>
	→ Intégrateur	<u>23</u>
	→ Intégrateur différentiel	<u>24</u>
	→ Dérivateur	<u>25</u>
	→ Amplificateur logarithmique	<u>26</u>
	→ Amplificateur exponentiel	<u>27</u>
\rightarrow	Sources de tensions :	
	\rightarrow Source de tension - 1	<u>28</u>
	\rightarrow Source de tension - 2	<u>30</u>
\rightarrow	Divers:	
	→ Indicateur pour résistance variable	<u>32</u>
	→ Simulateur de résistance négative	<u>33</u>
	→ Suiveur	<u>34</u>
	→ Détecteur de crête	<u>35</u>

http://electronique.aop.free.fr/							

Amplificateur non-inverseur


AOP supposé idéal, alimentation non représentée

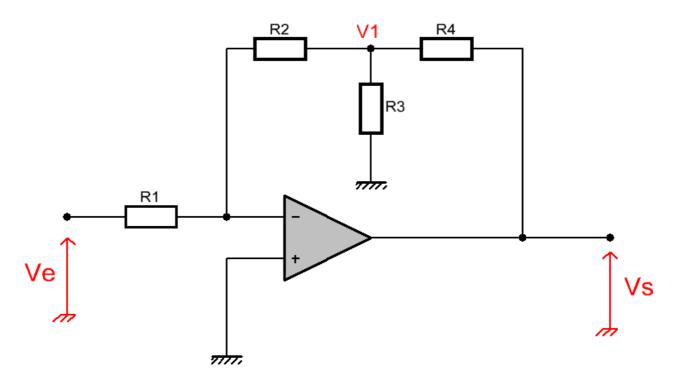
$$V_s = V_e (1 + \frac{R_1}{R_2})$$

A retenir:

- → Tension de sortie de même signe que celle d'entrée
- \rightarrow Vs >= Ve
- → Forte impédance d'entrée sur Ve

Amplificateur inverseur

AOP supposé idéal, alimentation non représentée

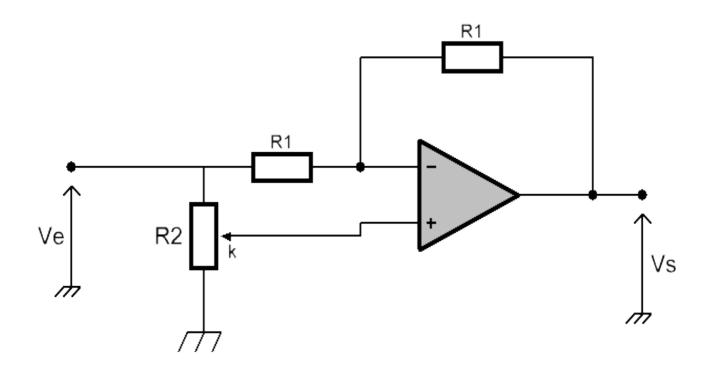

$$V_{s} = -(\frac{R_{2}}{R_{1}}) V_{e}$$

A retenir:

→ Tension de sortie de signe opposé à l'entrée

$$\rightarrow$$
 | Vs | $>$ | Ve | si $R2$ $>$ $R1$ | et | Vs | $<$ | Ve | si $R2$ $<$ $R1$

Amplificateur inverseur à gain renforcé

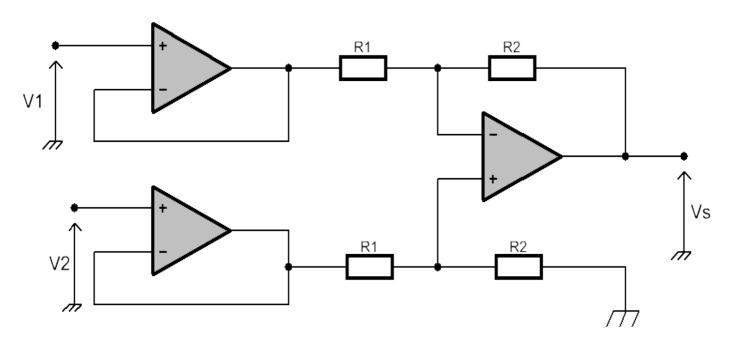

AOP supposé idéal, alimentation non représentée

$$V_s = -V_e \frac{R_2}{R_1} (1 + R_4 (\frac{1}{R_2} + \frac{1}{R_3}))$$

A retenir:

- → Tension de sortie de signe opposé à l'entrée
- → Gain total supérieur ou égal à celui d'un montage inverseur simple

Inverseur / Non-inverseur

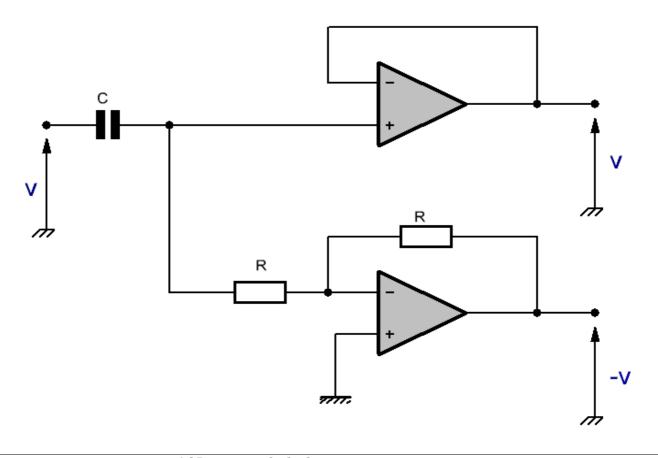

AOP supposé idéal, alimentation non représentée

$$V_s = V_e(2k-1)$$

A retenir:

ightarrow Gain variant entre +1 et -1 selon la position du potentiomètre (aux extrêmes : k = 0 ou k = 1)

Amplificateur d'instrumentation

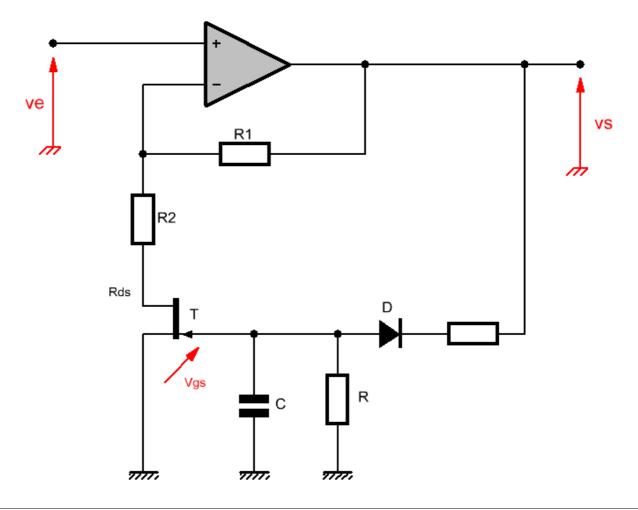

AOP supposé idéal, alimentation non représentée

$$V_{s} = \frac{R_{2}}{R_{1}}(V_{2} - V_{1})$$

A retenir:

- $\rightarrow\,$ Fortes impédances d'entrée sur V1 et V2
- \rightarrow Soustracteur simple en sortie
- → Ne soutire qu'un très faible courant au étages en amont (utile en cas de capteurs délivrant un faible courant)

Sorties symétriques



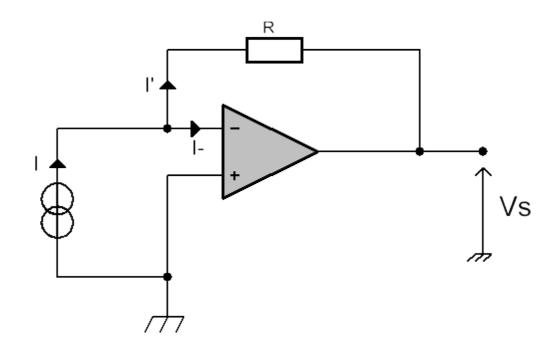
AOP supposé idéal, alimentation non représentée

A retenir:

- → Tensions de sortie de signes opposés
- → Le condensateur C bloque la composante continue du signal d'entrée V. L'enlever pour des sorties continues.

Amplificateur à contrôle automatique de gain

AOP supposé idéal, alimentation non représentée

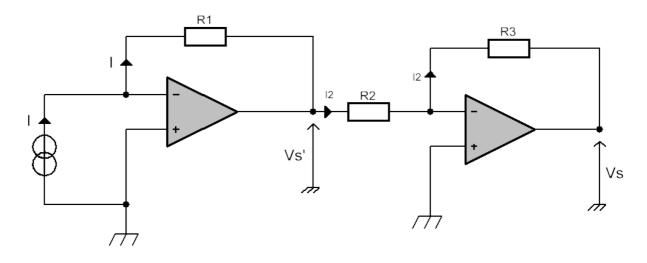

$$R_{ds} = \frac{R_{DS0}}{1 + \frac{V_{GS}}{V_P}} et V_s = V_e (1 + \frac{R_1}{R_2 + R_{DS}})$$

http://electronique.aop.free.fr/

A retenir:

- → Montage amplificateur non-inverseur modifié
- → L'ensemble C, R et D forme un détecteur de crêtes négatives
- → Si | Vs | augmente, alors | Vgs | augmente et donc Rds aussi. De fait, le gain total du montage diminue.
- → Régulation automatique du gain pour éviter des amplitudes de sortie trop importantes (et la saturation de l'AOP par la même occasion)

Convertisseur tension/courant simple

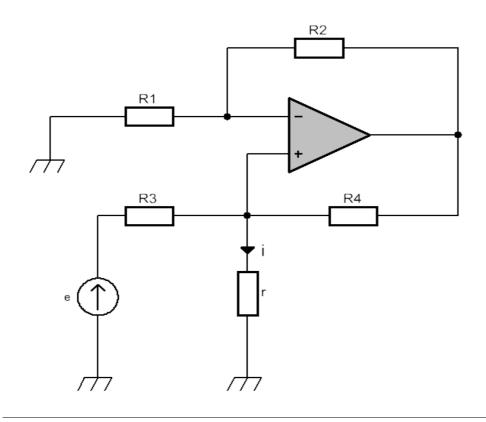

AOP supposé idéal, alimentation non représentée

$$V_s = -RI$$

A retenir:

- ightarrow Se comporte comme un générateur de tension commandé en courant (via I)
- → Montage limité par les caractéristiques électriques de l'AOP (tension de sortie max , saturation, alimentation, symétrique ou non, etc.)

Convertisseur tension/courant amélioré

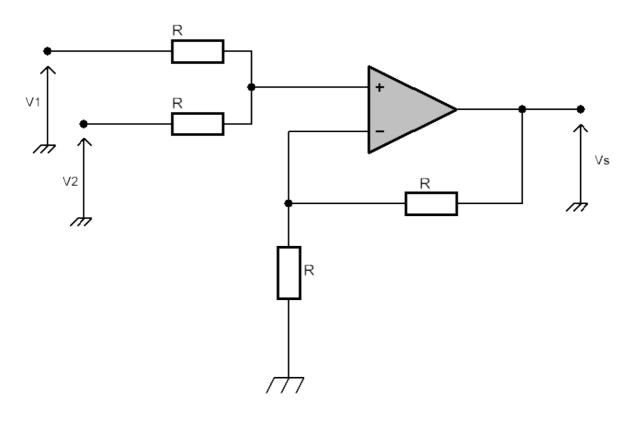

AOP supposé idéal, alimentation non représentée

$$V_s = -\frac{RR_3}{R_2}I$$

A retenir:

- → Se comporte comme un générateur de tension commandé en courant par un gain **R.R3/R2**
- → Si la condition **R.R3 = R2** est vérifiée, alors la sortie en tension est directement proportionnelle au courant d'entrée **I**.

Source de courant

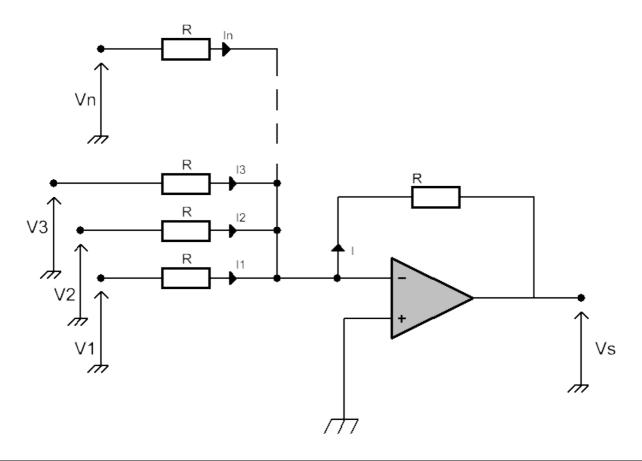

AOP supposé idéal, alimentation non représentée

$$i = \frac{e}{R_3} \quad si \quad R_1 R_4 = R_2 R_3$$

A retenir:

- → Fournit un courant i indépendant du circuit de charge (d'impédance r ici)
- ightarrow Montage nommé source de Howland

Sommateur non-inverseur

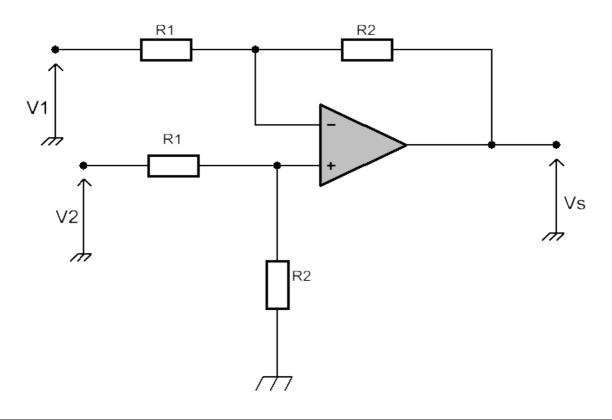

AOP supposé idéal, alimentation non représentée

$$V_s = V_1 + V_2$$

A retenir:

→ La tension de sortie maximale est limitée par la saturation de l'AOP (dépend des caractéristiques de ce dernier ainsi que de sa tension d'alimentation)

Sommateur inverseur

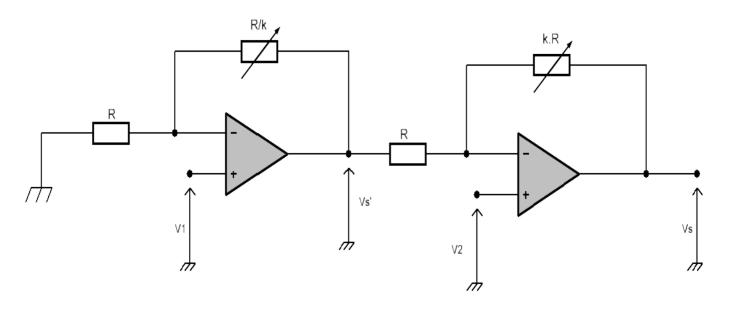

AOP supposé idéal, alimentation non représentée

$$V_s = -(V_1 + V_2 + \dots + V_n)$$

A retenir:

→ Rajouter un amplificateur inverseur de gain -1 en sortie pour rétablir le signe positif.

Soustracteur simple

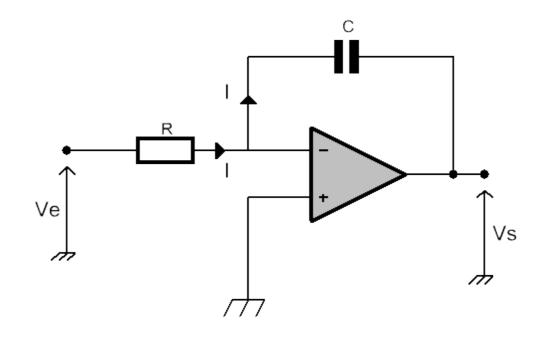

AOP supposé idéal, alimentation non représentée

$$V_{s} = \frac{R_{2}}{R_{1}}(V_{2} - V_{1})$$

A retenir:

- → Si **R2 = R1 = R**, alors la sortie est directement proportionnelle à la différence des entrées
- → Point faible du montage : impédances d'entrée non « infinies

Soustracteur amélioré

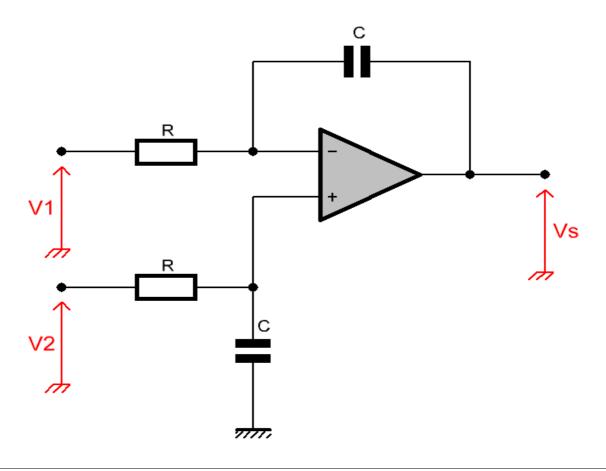

AOP supposé idéal, alimentation non représentée

$$V_s = (k+1)(V_2 - V_1)$$

A retenir:

- \rightarrow Avantage du montage : impédances d'entrée « infinies »
- → Inconvénient : utilisation de deux AOP

Intégrateur

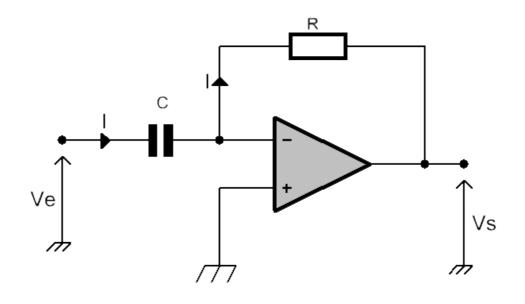

AOP supposé idéal, alimentation non représentée

$$V_s = -\frac{1}{RC} \int V_e dt$$

A retenir:

 \rightarrow En pratique, on rajoute une résistance en parallèle de ${\bf C}$ pour permettre une décharge de ce dernier et ainsi éviter des saturations de la sortie (cf. démo).

Intégrateur différentiel

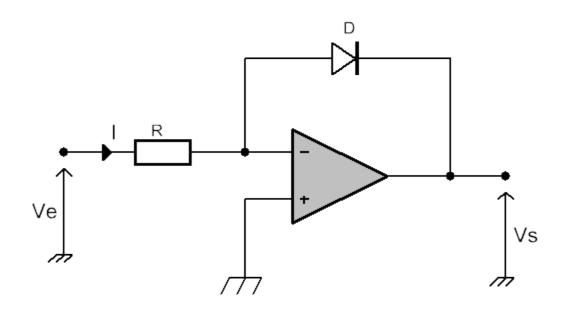

AOP supposé idéal, alimentation non représentée

$$V_s = \frac{1}{RC} \int (V_2 - V_1) dt$$

A retenir:

→ Utiliser l'espace de Laplace pour l'étude de ce montage (cf. démo)

Dérivateur


AOP supposé idéal, alimentation non représentée

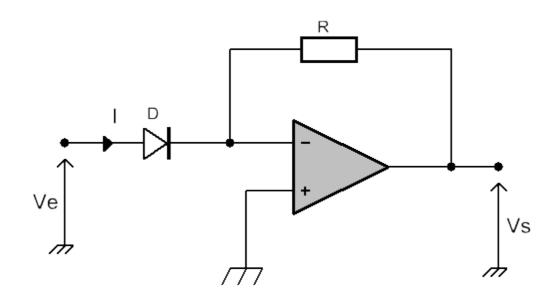
$$V_{s} = -RC\frac{dV_{e}}{dt}$$

A retenir:

ightarrow En pratique, on rajoute une résistance en série avec ${f C}$ pour stabiliser d'éventuelles oscillations en hautes-fréquences .

Amplificateur logarithmique

AOP supposé idéal, alimentation non représentée


$$V_s = -V_0 \ln\left(\frac{V_e}{RI_{sat}}\right)$$

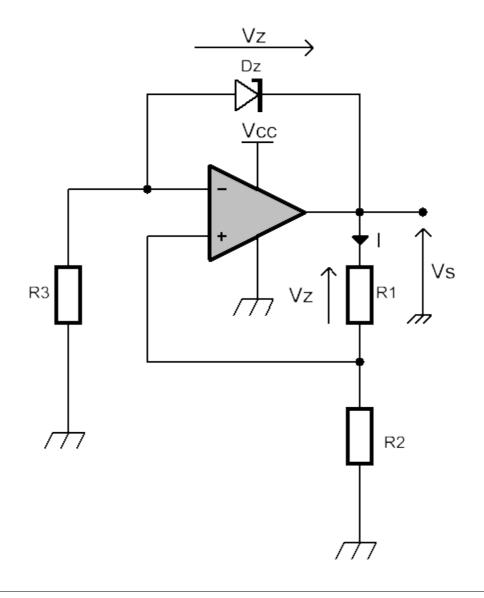
A retenir:

- → La tension **V0** est correspond à la tension thermodynamique, d'une valeur de 25 mV environ.
- → **Isat** correspond au courant de saturation de la diode **D**.
- \rightarrow Le courant à traversant la diode est donné par la relation :

$$I_{diode} = I_{sat}(e^{\frac{-V_s}{V_o}} - 1)$$

Amplificateur exponentiel

AOP supposé idéal, alimentation non représentée


$$V_s = -RI_{sat}e^{\frac{V_e}{V_0}}$$

A retenir:

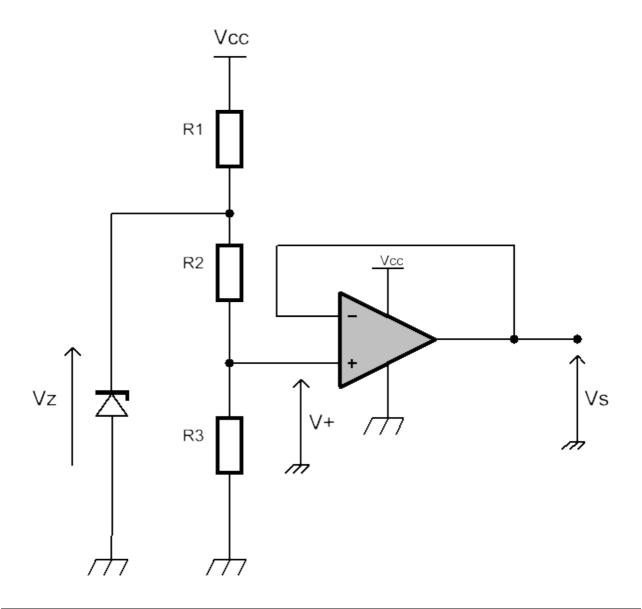
- → La tension **V0** est correspond à la tension thermodynamique, d'une valeur de 25 mV environ.
- → **Isat** correspond au courant de saturation de la diode **D**.
- ightarrow Le courant à traversant la diode est donné par la relation :

$$I_{diode} = I_{sat}(e^{\frac{-V_s}{V_0}} - 1)$$

Source de tension – 1

AOP supposé idéal

$$V_s = V_z (1 + \frac{R_2}{R_1})$$


http://electronique.aop.free.fr/

A retenir:

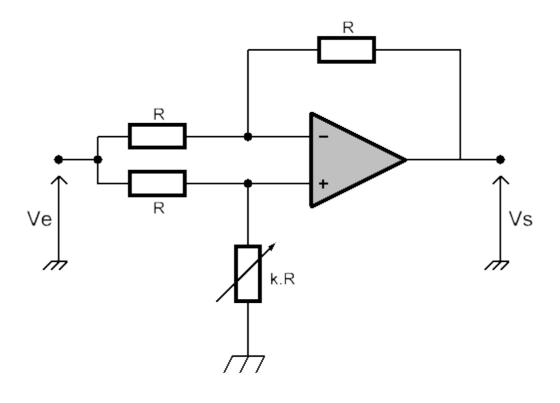
- \rightarrow L' AOP étant alimenté en +Vcc et ∂V , le montage ne fournit que des tensions positives en sortie.
- → La diode **Zéner** étant passante dans les deux sens, l'AOP travail donc en régime linéaire.
- \rightarrow Inversez le sens de la diode et alimentez l'AOP entre ∂V et -Vcc pour obtenir l'opposé en sortie :

$$V_s = -V_z(1 + \frac{R_2}{R_1})$$

Source de tension – 2

AOP supposé idéal

$$V_s = V_z(\frac{R_3}{R_2 + R_3})$$

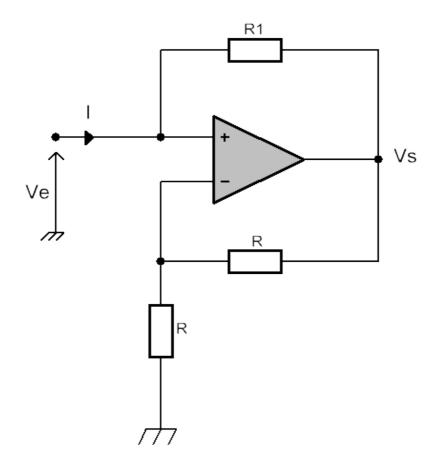

http://electronique.aop.free.fr/

A retenir:

- \rightarrow L' AOP étant alimenté en +Vcc et ∂V , le montage ne fournit que des tensions positives en sortie.
- → Le pont diviseur entre les résistances R2 et R3 peut être considéré « parfait » si l'on considère le courant de l'entrée non-inverseuse de l'AOP nul.
- → Voir sur le site pour le montage donnant la tension opposée négative :

$$V_s = -V_z(\frac{R_3}{R_2 + R_3})$$

Indicateur pour résistance variable

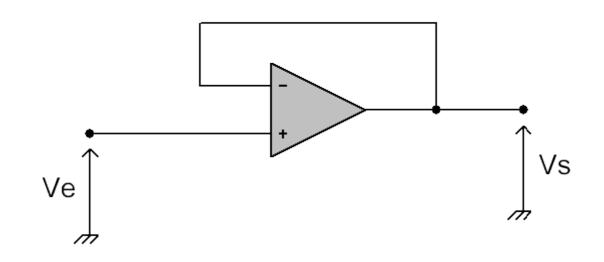

AOP supposé idéal, alimentation non représentée

$$V_s = V_e \frac{k-1}{k+1}$$

A retenir:

- \rightarrow Sortie proportionnelle au paramètre k
- ightarrow Le paramètre $\mathbf{k.R}$ peut correspondre à la résistance d'une thermistance

Simulateur de résistance négative

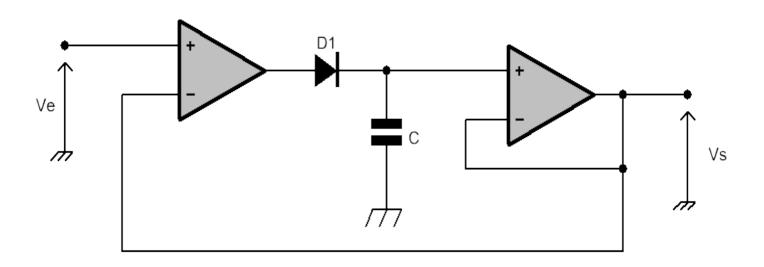

AOP supposé idéal, alimentation non représentée

$$V_e = -R_1 I$$

A retenir:

- → Boucle de réaction et de contre-réaction
- → Fournit de l'énergie au circuit connecté

Montage suiveur


AOP supposé idéal, alimentation non représentée

$$V_s = V_e$$

A retenir:

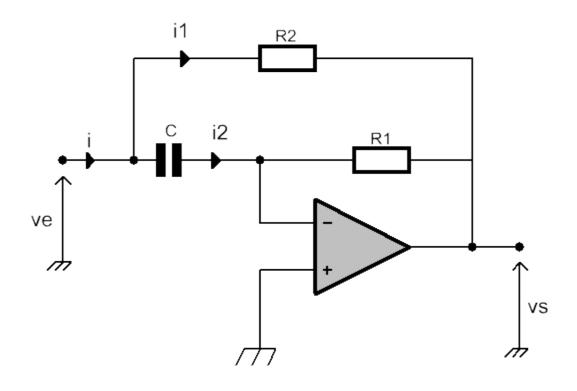
- → Grande impédance d'entrée
- → Etage tampon d'entrée ou de sortie


Détecteur de crête

AOP supposé idéal, alimentation non représentée

A retenir:

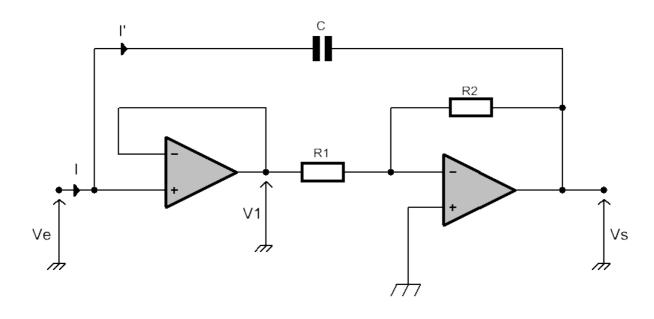

- → Fonctionnement en mode linéaire ou saturé du premier AOP
- → Chargement de la crête de tension dans le condensateur C
- → Faible décharge de C (suiveur en sortie, impédance d'entrée >> 1)
- \rightarrow Le sens de la diode **D1** permet de détecter soit des crêtes positives, soit négatives
- → Il est possible d'insérer un transistor entre les bornes du condensateur pour faire une RAZ (par commande de la base)


PARTIE 2

Montages à régime linéaire dépendants de la fréquence :

\rightarrow	Simulateurs d'impédance :	Page:
	→ Simulateur de capacité -1	<u>39</u>
	→ Simulateur de capacité – 2	$\overline{\underline{40}}$
	→ Simulateur d'inductance – 1	41
	\rightarrow Simulateur d'inductance – 2	<u>42</u>
\rightarrow	Correcteurs:	
	→ Correcteur PI	<u>44</u>
	→ Correcteur PD	<u>45</u>
	→ Correcteur PID	<u>47</u>
	→ Correcteur à avance/retard de phase	<u>48</u>
\rightarrow	Filtres actifs:	
	→ Passe-bas 1er ordre – 1	<u>49</u>
	\rightarrow Passe-bas 1er ordre – 2	<u>50</u>
	→ Passe-haut 1er ordre – 1	<u>51</u>
	\rightarrow Passe-haut 1er ordre – 2	<u>52</u>
	→ Déphaseur	<u>53</u>
	→ Passe-bande	<u>54</u>
	\rightarrow Structure de Rauch :	<u>55</u>
	\rightarrow Cellule passe-bas	<u>56</u>
	→ Cellule passe-haut	<u>58</u>
	→ Cellule passe-bande	<u>60</u>
	→ Structure de Sallen & Key :	<u>62</u>
	→ Cellule passe-bas	<u>64</u>
	→ Cellule passe-haut	<u>67</u>
	→ Cellule passe-bande	<u>70</u>

Simulateur de capacité - 1

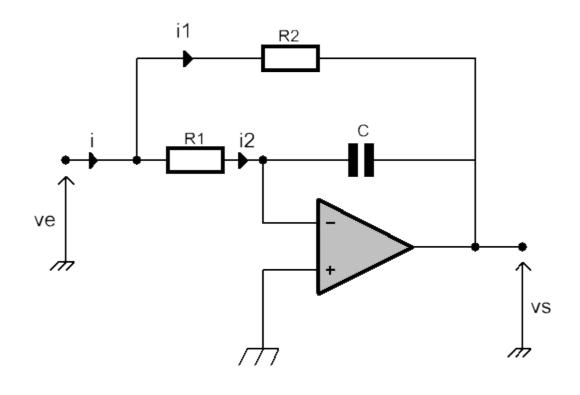

AOP supposé idéal, alimentation non représentée

$$C_{eq} = C(1 + \frac{R_1}{R_2})$$

A retenir:

- ightarrow L'impédance totale du montage est telle que la capacité totale « vue » est égale à la capacité réelle C multipliée par un gain
- \rightarrow On parle d'effet Miller

Simulateur de capacité - 2

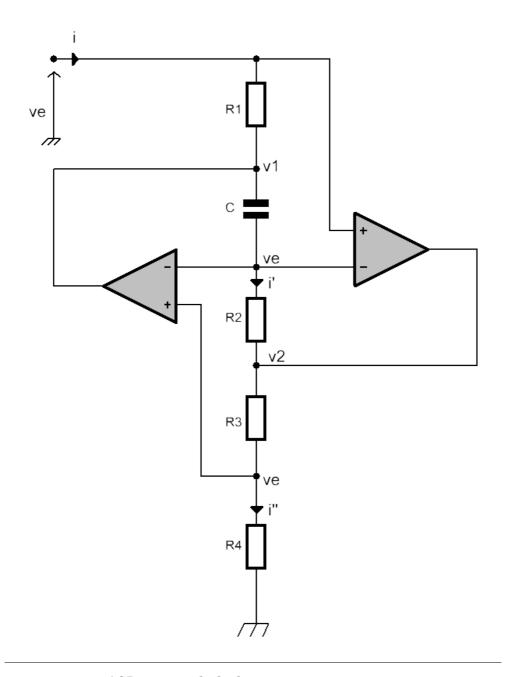

AOP supposé idéal, alimentation non représentée

$$C_{eq} = C(1 + \frac{R_2}{R_1})$$

A retenir:

→ L'impédance totale du montage est telle que la capacité totale « vue » est égale à la capacité réelle C multipliée par un gain

Simulateur d'inductance - 1

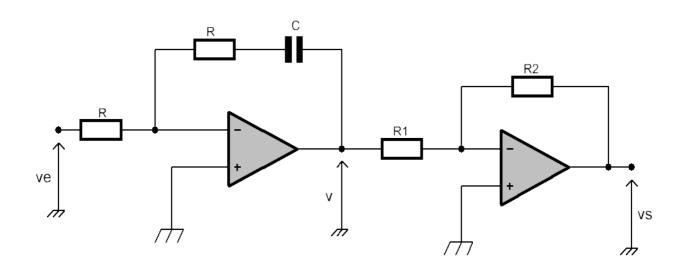

AOP supposé idéal, alimentation non représentée

$$L_{eq} = C R_1 R_2$$

A retenir:

→ Ce montage simule l'effet d'une self en régime alternatif

Simulateur d'inductance -2



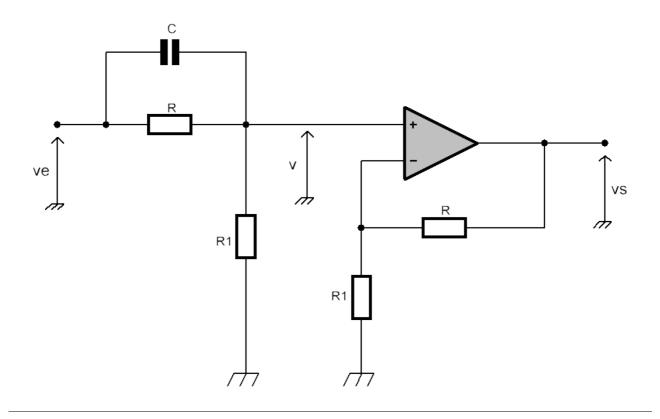
$$L_{eq} = \frac{R_1 R_2 R_4 C}{R_3}$$

A retenir:

 \rightarrow Ce montage simule l'effet d'une self en régime alternatif

Correcteur PI

AOP supposé idéal, alimentation non représentée


$$C(p) = \frac{R_2}{R_1} \frac{1 + RC p}{RC p}$$

A retenir:

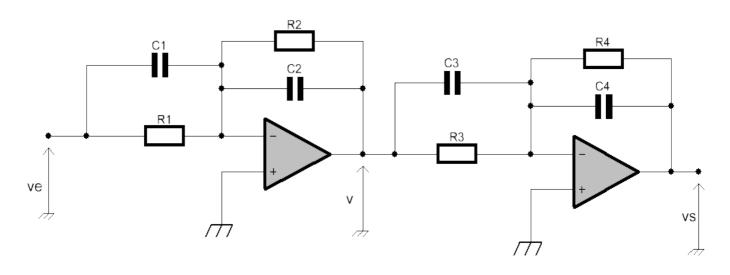
$$\rightarrow \text{Gain } A = \frac{R_2}{R_1}$$

- \rightarrow Constante de temps $\tau = RC$
- → Le premier étage fait office de filtre passe-bas

Correcteur PD

AOP supposé idéal, alimentation non représentée

$$C(p) = \frac{1+RCp}{1+\frac{RR_1}{R+R_1}Cp}$$


A retenir:

$$\rightarrow$$
 Gain $A = 1$

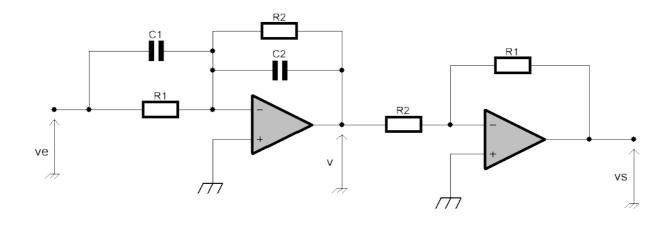
→ Constante de temps numérateur : $\tau_d = RC$

→ Constante de temps dénominateur :
$$\tau = \frac{RR_1}{R+R_1}$$

Correcteur PID

AOP supposé idéal, alimentation non représentée

$$C(p) = \frac{R_2 R_4}{R_1 R_3} \frac{(1 + R_1 C_1 p)(1 + R_3 C_3 p)}{(1 + R_2 C_2 p)(1 + R_4 C_4 p)}$$


$$C(p) = A \frac{(1 + \tau_{cI} p)(1 + \tau_{c2} p)}{(1 + \tau_{dIp})(1 + \tau_{d2} p)}$$

A retenir:

$$\rightarrow \text{Gain} \quad A = \frac{R_2 R_4}{R_1 R_3}$$

→ Il faut que :
$$C(p) = R_2 C_2 \ll R_1 C_1 < R_3 C_3 \ll R_4 C_4$$

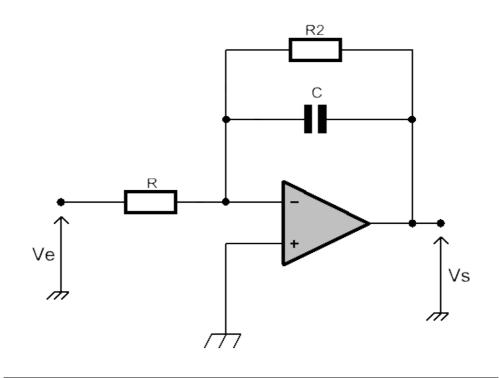
Correcteur à avance/retard de phase

AOP supposé idéal, alimentation non représentée

$$C(p) = \frac{1 + R_1 C_1 p}{1 + R_2 C_2 p}$$

A retenir:

$$\rightarrow \text{Gain } A = \frac{R_2}{R_1}$$


$$\rightarrow$$
 « Avance de phase » si $R_1C_1 > R_2C_2$

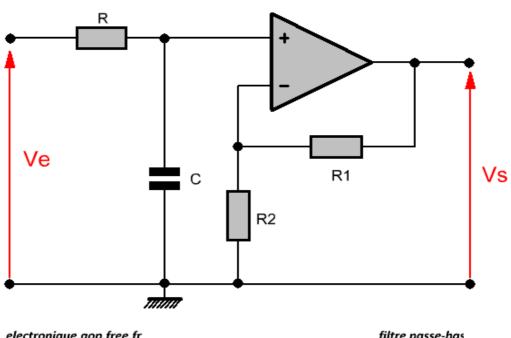
$$\rightarrow$$
 « Retard de phase » si $R_2C_2 > R_1C_1$

-> Démonstration correcteur à retard de phase <-

-> Démonstration correcteur à avance de phase ←

Filtre passe-bas -1

AOP supposé idéal, alimentation non représentée


$$H(j\omega) = -\frac{R_2}{R} \frac{1}{1 + j R_2 C \omega}$$

$$\rightarrow \text{Gain}: A = -\frac{R_2}{R}$$

→ Fréquence de coupure :
$$f_c = \frac{1}{2\pi R_2 C}$$

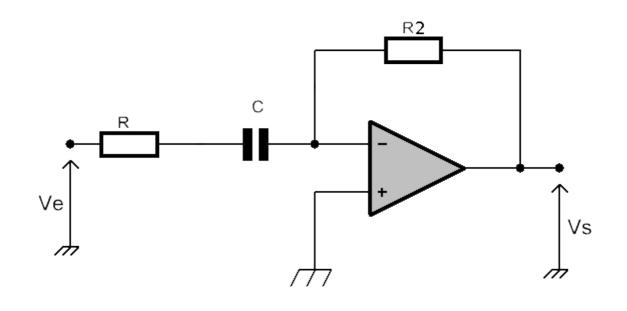
→ Attention, la BP de l'AOP est limitée en pratique

Filtre passe-bas -2

electronique.aop.free.fr

filtre passe-bas

AOP supposé idéal, alimentation non représentée


$$H(j\omega) = (1 + \frac{R_1}{R_2}) \frac{1}{1 + jRC\omega}$$

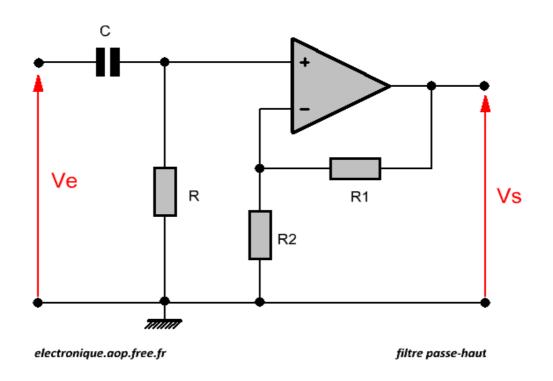
$$\rightarrow \text{Gain}: A = (1 + \frac{R_1}{R_2})$$

 \rightarrow Fréquence de coupure :

→ Attention, la BP de l'AOP est limitée en pratique

Filtre passe-haut -1

AOP supposé idéal, alimentation non représentée


$$H(j\omega) = -\frac{jR_2C\omega}{1+jRC\omega}$$

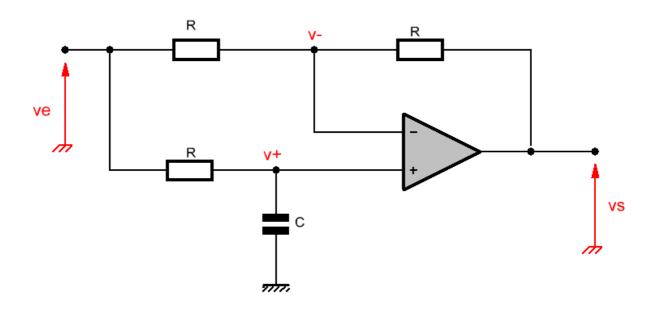
$$\rightarrow$$
 Gain: $A = -1$

→ Fréquence de coupure si
$$R = R2$$
: $f_c = \frac{1}{2\pi RC}$

→ Attention, la BP de l'AOP est limitée en pratique

Filtre passe-haut -2

AOP supposé idéal, alimentation non représentée


$$H(j\omega) = (1 + \frac{R_1}{R_2}) \frac{jRC\omega}{1 + jRC\omega}$$

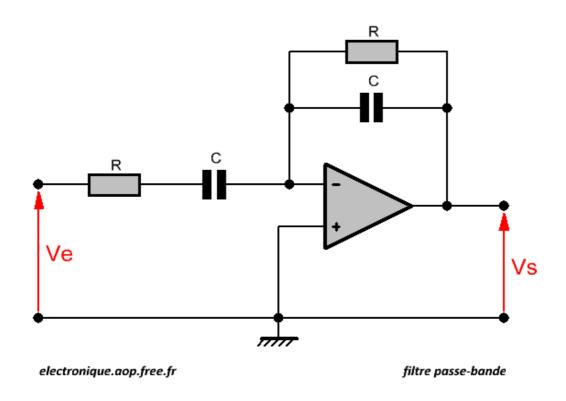
$$\rightarrow \text{Gain}: A = (1 + \frac{R_1}{R_2})$$

→ Fréquence de coupure : $f_c = \frac{1}{2\pi RC}$

→ Attention, la BP de l'AOP est limitée en pratique

Filtre passe-tout (déphaseur)

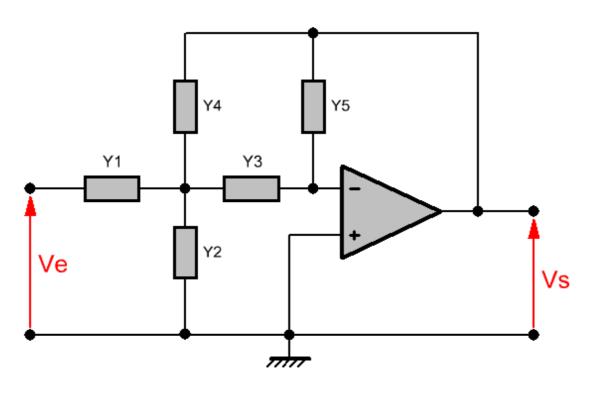
AOP supposé idéal, alimentation non représentée


$$H(j\omega) = \frac{1 - jRC\omega}{1 + jRC\omega}$$

A retenir:

 \rightarrow Module: $|H(j\omega)| = 1 \quad \forall \omega$

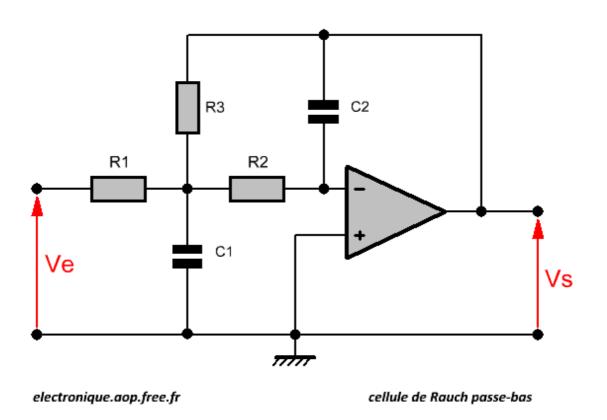
 \rightarrow Déphasage : $\varphi(j\omega) = -2 \arctan(RC\omega)$


Filtre passe-bande

AOP supposé idéal, alimentation non représentée

$$H(j\omega) = \frac{-jRC\omega}{(1+jRC\omega)^2}$$

Structure de Rauch

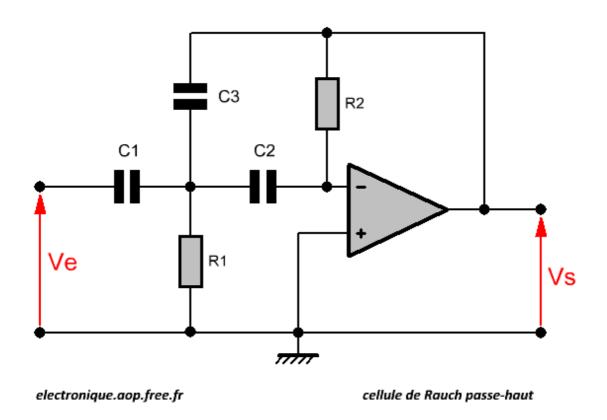

electronique.aop.free.fr

structure de Rauch

AOP supposé idéal, alimentation non représentée

$$\frac{V_S}{V_e} = - \frac{Y_1 Y_3}{Y_3 Y_4 + Y_5 (Y_1 + Y_2 + Y_3 + Y_4)}$$

Cellule de Rauch passe-bas

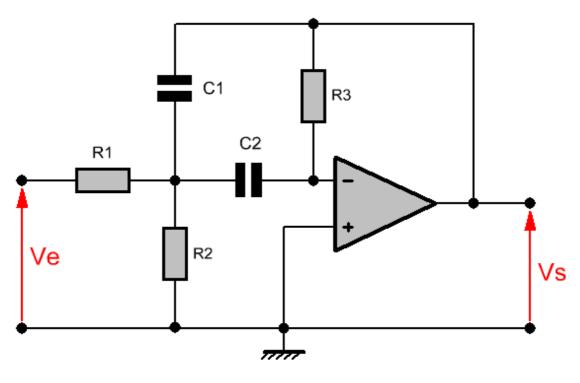

$$H(j\omega) = -\frac{1}{1 + 3jRC_2\omega + (j\sqrt{C_1C_2}\omega R)^2}$$

$$\rightarrow$$
 Gain : $A = -1$

$$\rightarrow \mbox{ Fr\'equence de coupure}: \ \ \, f_c \ = \ \, \frac{1}{2 \, \pi \, R \, \sqrt{C_1 \, C_2}}$$

→ Coefficient d'amortissement :
$$m = \frac{3}{2} \sqrt{\frac{C_2}{C_1}}$$

Cellule de Rauch passe-haut



$$H(j\omega) = -\frac{(jC\sqrt{R_1R_2}\omega)^2}{1 + 3jR_1C\omega + (jC\sqrt{R_1R_2}\omega)^2}$$

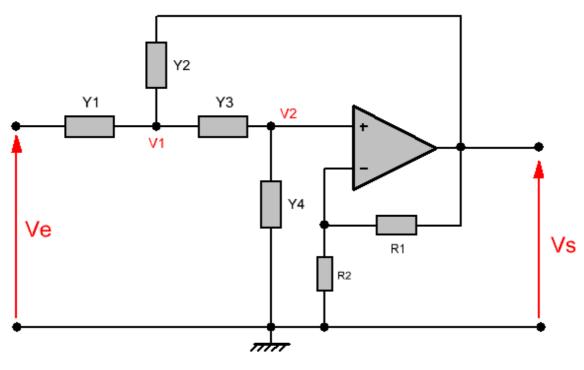
$$\rightarrow$$
 Gain : $A = -1$

→ Coefficient d'amortissement :
$$m = \frac{3}{2} \sqrt{\frac{R_1}{R_2}}$$

Cellule de Rauch passe-bande

electronique.aop.free.fr

cellule de Rauch passe-bande


$$H(j\omega) = -\frac{R_3}{2R_1} \frac{2j\omega \frac{R_1 R_2}{R_1 + R_2} C}{1 + 2j\omega \frac{R_1 R_2}{R_1 + R_2} C + (j\omega C)^2 R_3 \frac{R_1 R_2}{R_1 + R_2}}$$

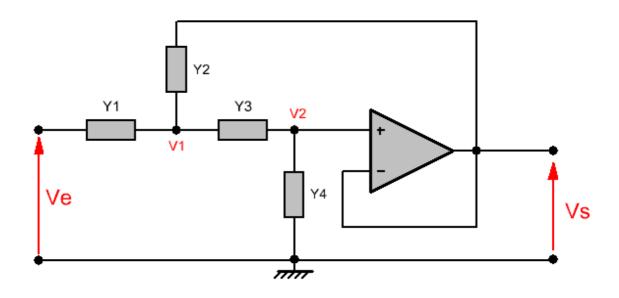
$$\rightarrow \text{ Gain} : A = -\frac{R_3}{2R_1}$$

$$ightarrow$$
 Fréquence de coupure : $f_c = \frac{1}{2\pi C} \sqrt{\frac{R_1 + R_2}{R_1 R_2 R_3}}$

$$ightarrow$$
 Coefficient d'amortissement : $m = \sqrt{\frac{R_1 R_2}{R_3 (R_1 + R_2)}}$

Structure de Sallen & Key

electronique.aop.free.fr

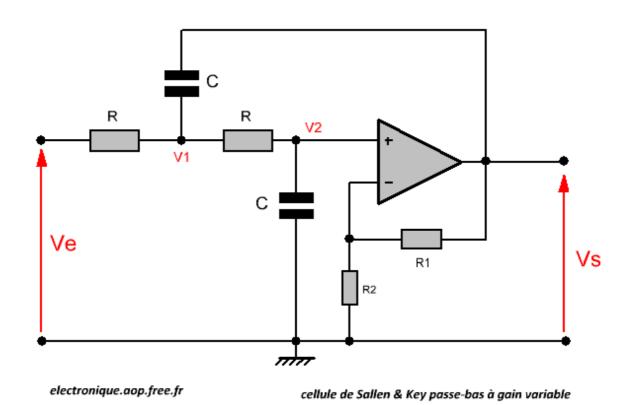

structure de Sallen & Key à gain variable

$$\frac{V_s}{V_e} = K_A \cdot \frac{Y_1 Y_3}{(Y_1 + Y_2)(Y_3 + Y_4) + Y_3(Y_4 - Y_2 K_A)}$$

avec
$$K_A = \frac{R_1 + R_2}{R_2}$$

A retenir:

→ Existe également sans les résistances dans la boucle de contre-réaction. On a alors :

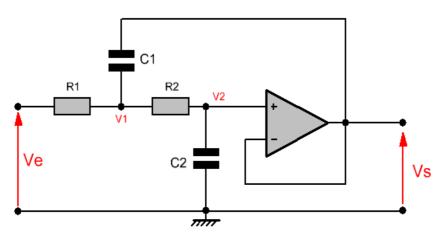

electronique.aop.free.fr

structure de Sallen & Key

AOP supposé idéal, alimentation non représentée

$$\frac{V_s}{V_e} = \frac{Y_1 Y_3}{(Y_1 + Y_2)(Y_3 + Y_4) + Y_3(Y_4 - Y_2)}$$

Cellule de Sallen & Key passe-bas


$$H(j\omega) = K_A \frac{1}{1 + (3 - K_A) jRC\omega + (jRC\omega)^2}$$

$$\rightarrow \text{ Gain} : \overline{K_A = \frac{R_1 + R_2}{R_2}}$$

→ Fréquence de coupure :
$$f_c = \frac{1}{2\pi RC}$$

→ Coefficient d'amortissement :
$$m = 1 - \frac{R_1}{2R_2}$$

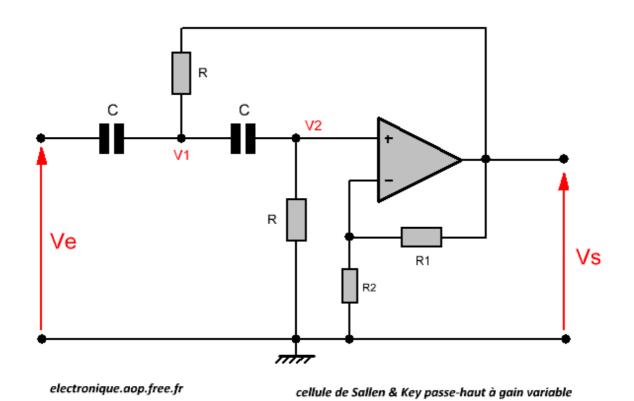
→ Existe également sans les résistances dans la boucle de contre-réaction. On a alors :

electronique.aop.free.fr

cellule de Sallen & Key passe-bas

AOP supposé idéal, alimentation non représentée

$$H(j\omega) = \frac{1}{1 + C_2(R_1 + R_2)j\omega + R_1R_2C_1C_2(j\omega)^2}$$

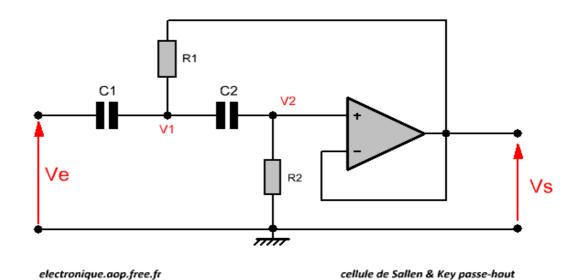

$\underline{http://electronique.aop.free.fr/}$

$$\rightarrow$$
 Gain : $A = 1$

$$ightarrow$$
 Fréquence de coupure : $f_c = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$

$$ightarrow$$
 Coefficient d'amortissement : $m = \frac{C_2(R_1 + R_2)}{2\sqrt{R_1R_2C_1C_2}}$

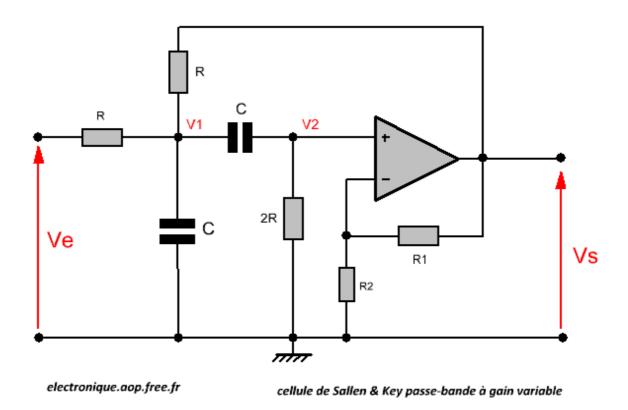
Cellule de Sallen & Key passe-haut


$$H(j\omega) = K_A \frac{(jRC\omega)^2}{1 + (3-K_A)jRC\omega + (jRC\omega)^2}$$

$$\rightarrow \text{ Gain} : \quad K_A = \frac{R_1 + R_2}{R_2}$$

→ Fréquence de coupure :
$$f_c = \frac{1}{2\pi RC}$$

→ Coefficient d'amortissement :
$$m = 1 - \frac{R_1}{2R_2}$$


→ Existe également sans les résistances dans la boucle de contre-réaction. On a alors :

$$H(j\omega) = \frac{C_1 C_2 R_1 R_2 (j\omega)^2}{1 + R_1 (C_1 + C_2) j\omega + C_1 C_2 R_1 R_2 (j\omega)^2}$$

- \rightarrow Gain : A = 1
- ightarrow Fréquence de coupure : $f_c = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$
- ightarrow Coefficient d'amortissement : $m = \frac{C_2(R_1 + R_2)}{2\sqrt{R_1R_2C_1C_2}}$

Cellule de Sallen & Key passe-bande

$$H(j\omega) = \frac{K_A}{3 - K_A} \frac{(3 - K_A)jRC\omega}{1 + (3 - K_A)jRC\omega + (jRC\omega)^2}$$

→ Gain :
$$A = \frac{R_1 + R_2}{2R_2 + R_1}$$

$$ightarrow$$
 Fréquence de coupure : $f_c = \frac{1}{2\pi RC}$

$$ightarrow$$
 Coefficient d'amortissement : $m=1-\frac{R_1}{2R_2}$

→ Existe également sans les résistances dans la boucle de contre-réaction. On a alors :

AOP supposé idéal, alimentation non représentée

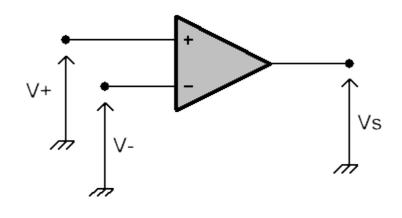

$$H(j\omega) = \frac{1}{3} \frac{3\frac{R_3}{R + R_3} R C j\omega}{1 + 3\frac{R_3}{R + R_3} R C j\omega + \frac{R_3}{R + R_3} (R C)^2 (j\omega)^2}$$

$\underline{http://electronique.aop.free.fr/}$

$$\rightarrow$$
 Gain : $A = \frac{1}{3}$

$$\rightarrow \mbox{ Fr\'equence de coupure}: \quad f_c \ = \ \sqrt{(1 + \frac{R}{R_3})} \frac{1}{2 \, \pi \, (R \, C)}$$

→ Coefficient d'amortissement :
$$m = \frac{3}{2} \sqrt{\frac{R_3}{R + R_3}}$$

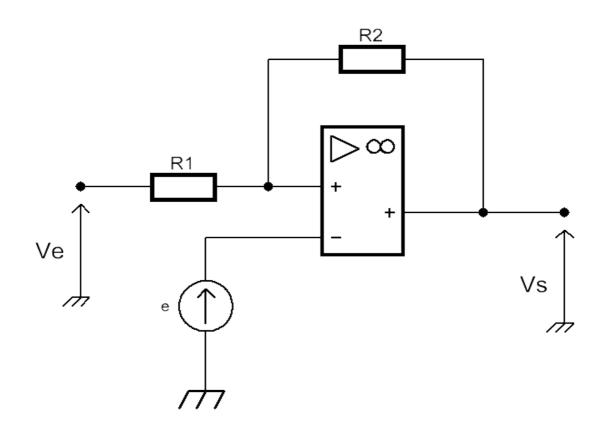

PARTIE 3

Montages à régime non-linéaire :

\rightarrow	Comparateurs:	Page:
	→ Comparateur simple	<u>76</u>
	→ Trigger de Schmitt non-inverseur	<u>77</u>
	→ Trigger de Schmitt inverseur	<u>79</u>
	→ Comparateur à fenêtre - 1	<u>81</u>
	ightarrow Comparateur à fenêtre - 2	<u>83</u>
\rightarrow	Redresseurs sans seuil:	
	→ Redresseur mono-alternance	<u>85</u>
→	Générateurs de fonctions :	
	→ Monostable	<u>86</u>
	→ Astable	<u>88</u>
	→ Oscillateur à pont de Wien	<u>90</u>
	→ Générateur triangulaire – 1	<u>91</u>
	→ Générateur triangulaire – 2	<u>93</u>

http://electronique.aop.free.fr/					

Comparateur simple

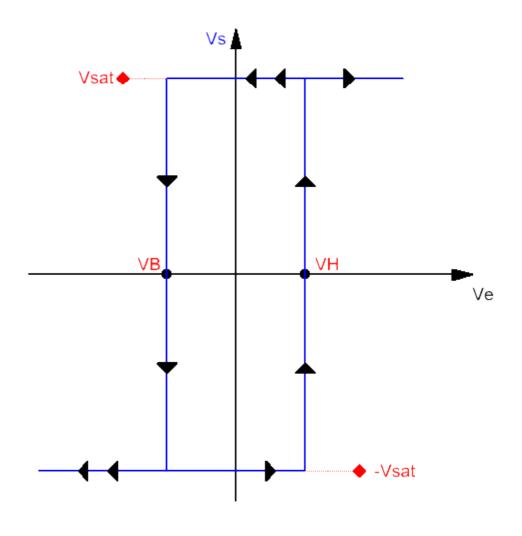

AOP supposé idéal, alimentation non représentée

•
$$V_{+} > V_{-} \implies V_{s} = +V_{sat} \approx +V_{cc}$$
• $V_{+} < V_{-} \implies V_{s} = -V_{sat} \approx -V_{cc}$

A retenir:

- → Réalise la comparaison des tensions d'entrée V+ et V_
- → *Point faible* : phénomène de multi-basculement si entrée(s) bruitée(s) (cf. démonstration)

Trigger de Schmitt non-inverseur

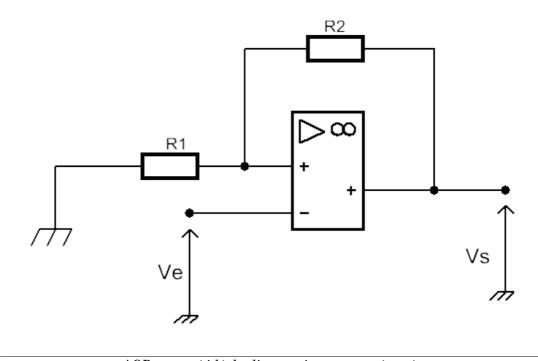


AOP supposé idéal, alimentation non représentée

Ce montage est caractérisé par le cycle d'hystérésis suivant, avec :

$$V_H = V_{seuil_{haut}} = e(1 + \frac{R_1}{R_2}) + V_{sat} \frac{R_1}{R_2}$$

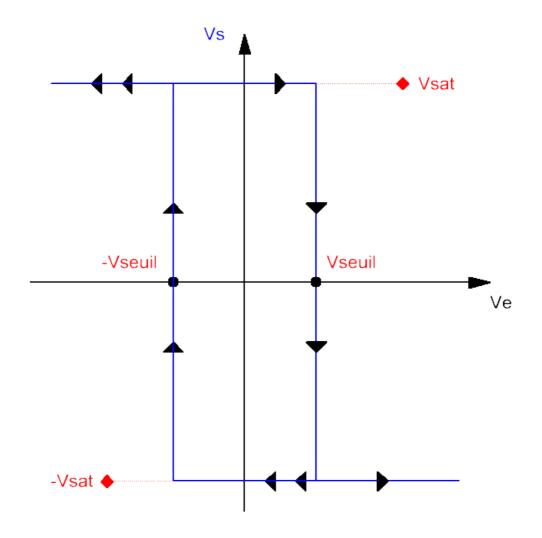
$$V_B = V_{seuil_{bas}} = e(1 + \frac{R_1}{R_2}) - V_{sat} \frac{R_1}{R_2}$$



Vsat proche de Vcc, tension d'alimentation de l'AOP

A retenir:

- ightarrow Deux seuils différents avec $V_{seuil_{haut}} > V_{seuil_{bas}}$
- → Disparition du phénomène de multi-basculement (cf. démonstration


Trigger de Schmitt inverseur

AOP supposé idéal, alimentation non représentée

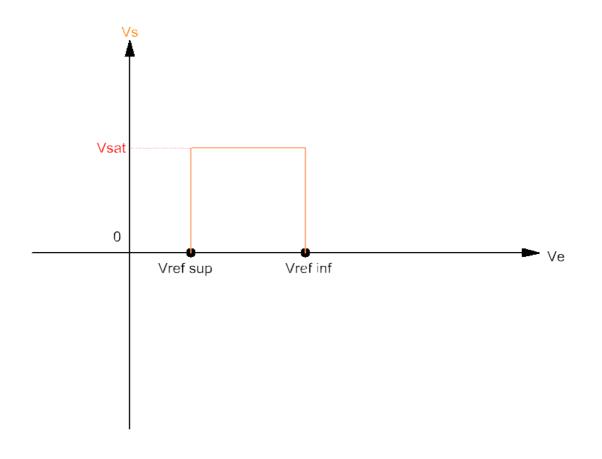
Ce montage est caractérisé par le cycle d'hystérésis suivant, avec :

$$V_{seuil} = V_{sat}(\frac{R_1}{R_1 + R_2})$$



Vsat proche de Vcc, tension d'alimentation de l'AOP

A retenir:


→ Disparition du phénomène de multi-basculement (cf. démonstration)

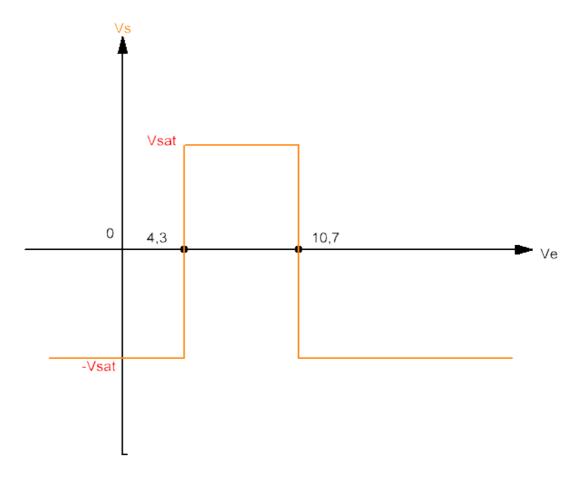
Comparateur à fenêtre - 1


AOP supposé idéal, alimentation non représentée

- \rightarrow Permet de détecter si la tension **Ve** est comprise dans l'intervalle [$Vref_sup, Vref_inf$]
- → Ici, la condition **Vref_inf > Vref_sup** est supposée vérifiée. Si l'inverse est vrai, alors **Vs** est à nul dans l'intervalle de mesure et égale à +Vsat ailleurs (grapheV=f(Ve) inverse)

 $Graphe\ Vs = f(Ve)$

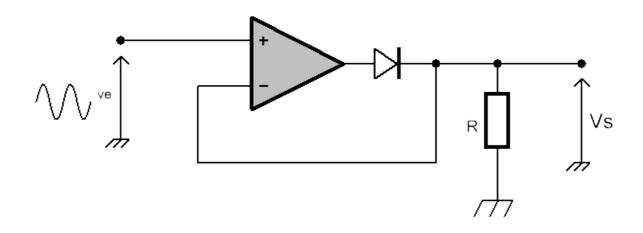
Comparateur à fenêtre – 2



AOP supposé idéal, alimentation non représentée

A retenir:

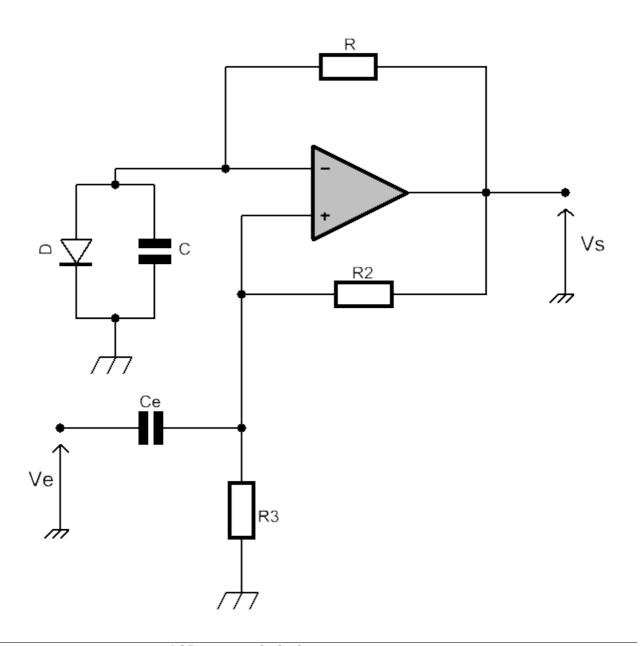
→ Permet de détecter si la tension **Ve** est comprise dans un intervalle prédéfini.


http://electronique.aop.free.fr/

 $Graphe\ Vs = f(Ve)$

- $\rightarrow\,$ Dans cet exemple, Vcc = 15 V et la tension de seuil des diodes est fixée à $0.7\mathrm{V}$
- → Jouez sur VCC et sur les résistances pour ajuster la fenêtre
- ightarrow Voir la démonstration pour bien comprendre ce montage.

Redresseur mono-alternance

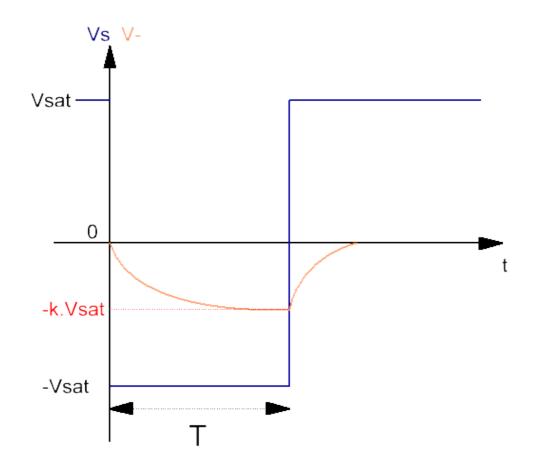

AOP supposé idéal, alimentation non représentée

 $R = circuit\ de\ charge$

A retenir:

- → Redressement mono-alternance de la tension d'entrée alternative (d'amplitude crête < Vsat) .
- → Le grand gain en boucle ouverte de l'AOP élimine l'effet de la tension de seuil de la diode
- → Inversez le sens de la diode pour ne garder que les alternances négatives
- → Ce montage possède l'originalité de fonctionner alternativement en régime saturé et en régime linéaire (suiveur)

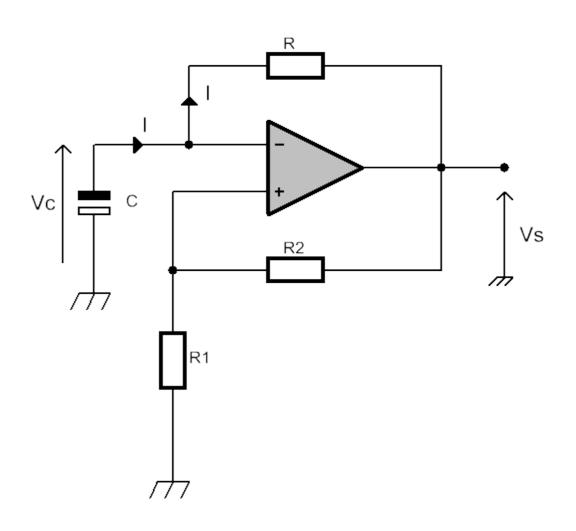
Monostable



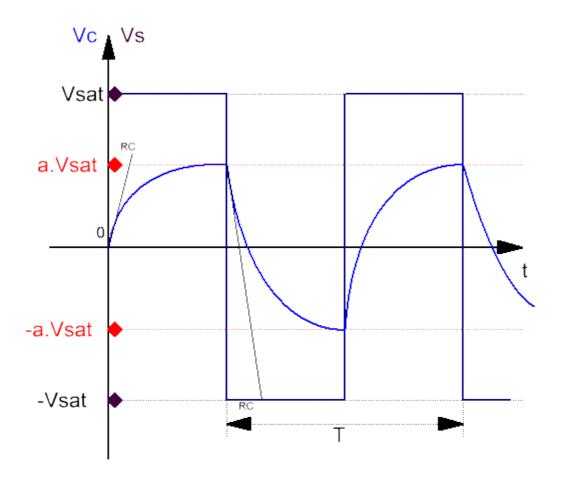
AOP supposé idéal, alimentation non représentée

Ce = condensateur de liaison

A retenir:


ightarrow Réalise une tempo de durée ${f T}$ à - ${f Vsat}$ lorsqu'une impulsion négative est présentée en ${f Ve}$

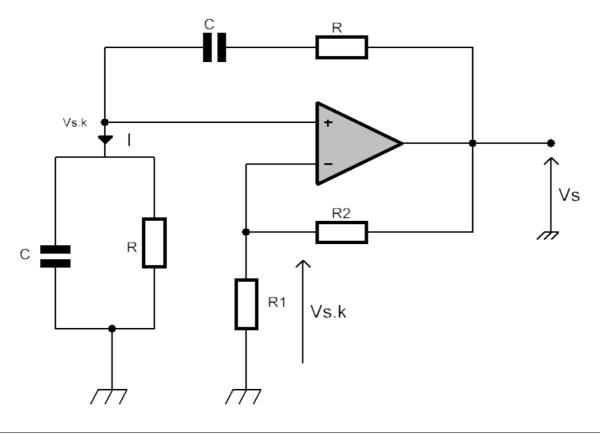
Graphes Vs(t) et V-(t)


$$T = RC \ln\left(\frac{1}{1-k}\right) \quad \text{avec} \quad k = \frac{R_3}{R_3 + R_2}$$

Astable

AOP supposé idéal, alimentation non représentée

- \rightarrow La sortie $\bf Vs$ bascule constamment de + $\bf Vsat$ à - $\bf Vsat$ selon une période T de rapport cyclique de 50%
- \rightarrow Valeur moyenne nulle (pas d'offset)



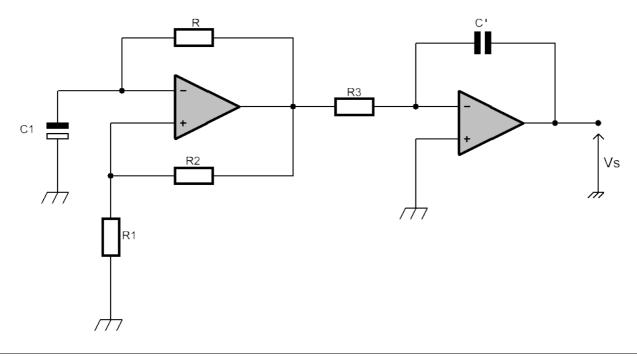
 $Graphes \ Vs(t) \ et \ Vc(t)$

$$T = 2RC \ln\left(1 + \frac{2R_1}{R_2}\right)$$

ightarrow Pour modifier le rapport cyclique, voir la démonstration

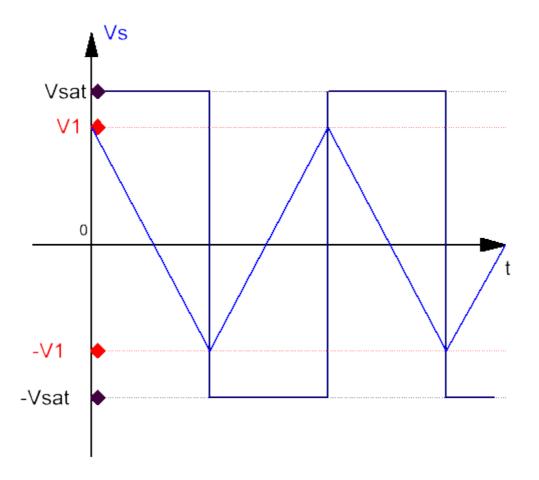
Oscillateur à pont de Wien

AOP supposé idéal, alimentation non représentée


A retenir:

ightarrow La boucle de réaction positive est constituée d'un pont de **Wien**

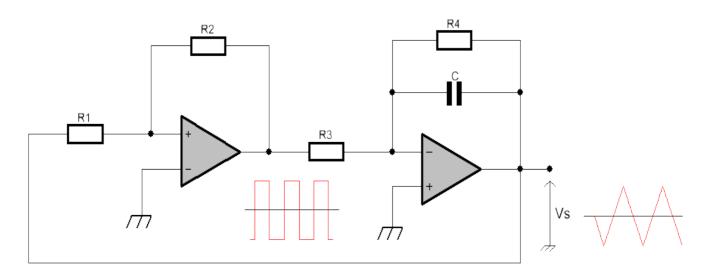
→ La sortie oscille à la fréquence
$$f = \frac{1}{2\pi RC}$$
 si la condition $R_2 = 2R_1$ est vérifiée


Attention aux dérives de la fréquence centrale dues à la température!

Générateur triangulaire – 1

AOP supposé idéal, alimentation non représentée

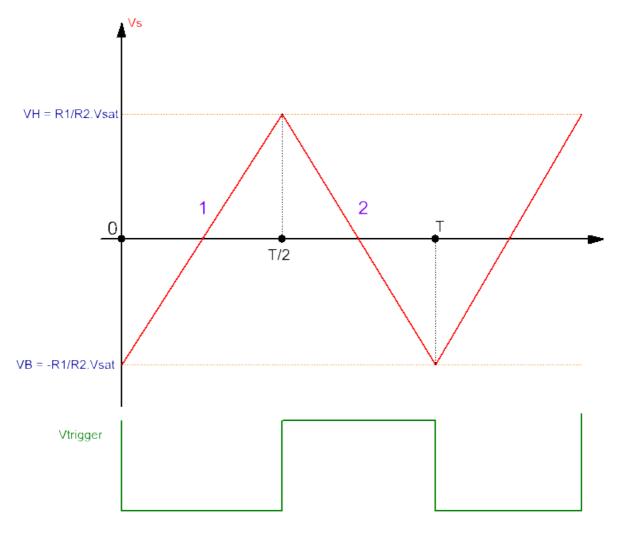
- \rightarrow Le premier étage est un a stable, tandis que le second est un intégrateur
- → Sortie triangulaire de période fixée par la période de l'étage l'astable



Graphes Vs(t)

Amplitude V1 du signal triangulaire :

$$V_1 = \frac{V_{sat}T}{4R_3C'}$$


Générateur triangulaire – 2

AOP supposé idéal, alimentation non représentée

- → Le premier étage est un trigger de Schmitt non-inverseur, tandis que le second est un intégrateur
- → La résistance R4 (servant à améliorer le comportement réel de l'intégrateur) est négligée dans le calcul de la période du signal de sortie à des fins de simplification

http://electronique.aop.free.fr/

 $Graphes\ Vs(t)$

Période du signal triangulaire :

$$T = \frac{4R_1R_3C}{R_2}$$

