
Path: Home => AVR overview => Applications => DCF77 receivers

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

DCF77 receivers

Note that parts of these pages have
not been tested yet and provide pre-
liminary information only! Some links
do not yet work because this webpage
is still under construction.

Table of content
DCF77 receivers...4

DCF77 how-to...4
DCF77 receiver basics...5
What you get here..8

Overview on what is described here...8
Links to other documents..10

1 DCF77 cross antenna...11
1.1 Mounting..12
1.2 Measuring the coils..12

1.2.1 Measuring results with a grid dip meter...12
1.2.2 Measuring results with a CMOS oscillator..13

1.3 Buffer stage..13
1.4 AFC Frequency adjustment...14
1.5 Properties of the cross antenna..15

2 Transistorized DCF77 receiver amplifier..17
2.1 Amplifier and driver for DCF77 RF..17
2.2 Rectification...20

2.2.1 Diode Rectifier...20
2.2.2 Rectifier with an ATtiny25...22

2.3 Automatic regulation..23
2.4 The pass-band curve of LC filters..24

3 A DCF77 receiver direct amplifier with a TCA440..26
3.1 The TCA440..27
3.2 Schematic for a DCF77 direct amplifier with TCA440...27

4 DCF77 superhet receiver with xtal filter...29
4.1 Advantages of a superhet over any other concepts..29
4.2 The superhet schematic..29

Page 1 of 112

http://www.avr-asm-tutorial.net/index.html
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html

4.2.1 TCA440 with the internal LC oscillator circuit...30
4.2.2 TCA440 with an external oscillator...31

4.2.2.1 Concept using a crystal oscillator as basis...31
4.2.2.2 Selecting the crystal frequency...31
4.2.2.3 Rectangles to sine waves..33
4.2.2.4 The schematic with a discrete crystal...34
4.2.2.5 The schematic with an integrated xtal oscillator..35
4.2.2.6 Software for the ATtiny25..35
4.2.2.7 Fuses of the ATtiny25...37
4.2.2.8 Mounting the xtal sine wave generator..37

4.1.3 LC-VCO-Oscillator with ATtiny25 controller...38
4.1.3.1 Design of the LC-VCO-Oscillator...38
4.1.3.2 Frequency measurement and -regulation...39
4.1.3.3 Programming the ATtiny25..40
4.1.3.4 Connecting the LC oscillator to the TCA440...41
4.1.3.5 The source code for the ATtiny25..41

4.2.4 Mounting the superhet...46
4.3 The xtal filter for 32.768 kHz..46
4.4 Automatic control of the DCF77 signals...47

5 DCF77 controller with ATtiny45...48
5.1 Why assembler? Why an ATtiny45 and nothing else?...48
5.2 The schematic of the ATtiny45 controller for DCF77...49
5.3 Functioning..50

5.3.1 Start-up phase...50
5.3.2 Detection of zero/one bits and minute change...51
5.3.3 Generation and properties of the PWM signals...51
5.3.4 Measuring and evaluation of the AM DC signals..53
5.3.5 Serial transmission...54

5.4 Software...57
5.5 Operation experiences..58

6 DCF77 display with an ATtiny24..59
6.1 Connecting the device with the receiver..59
6.2 Display...60
6.3 Software for the ATtiny24..60

6.3.1 Reception of the serial signals..60
6.3.2 Seconds and serial interface time-out..61
6.3.3 Debugging option...61

6.4 Assembler source code for the DCF77 display with ATtiny24..61
7 DCF77 AM rectifier with ATtiny25..62

7.1 How it works..62
7.1.1 Hardware..63
7.1.2 Duo-LED option..64
7.1.3 DC Output..65
7.1.4 Available resources...66

7.2 Testing..66
7.3 Software for the rectifier..67

8 DCF77 PCB layouts..72
8.1 Modules and connections...72

8.1.1 The HF-RX module..73
8.1.2 The Direct-Receiver modules..74

Page 2 of 112

8.1.3 The Superhet receiver modules..74
8.1.4 The AM rectifier modules..74
8.1.5 The Control- and Display-module...74

8.2 Links to the PCB layouts...74
8.2.1 Layouts for the modules...74
8.2.2 Complete PCB layouts with combinations..75

9 DCF77 Alarm clock with ATmega324..78
9.1 Selecting the controller..79
9.2 The hardware...80
9.3 Mounting the alarm clock..82
9.4 Software for the alarm clock..82

9.4.1 Download of the complete final software...82
9.4.2 Software for hardware testing...82
9.4.2.1 Testing the crystal clock and the ISP interface...82
9.4.2.2 Installation and testing of the LCD..82
9.4.2.3 Testing the LEDs..83
9.4.2.4 Testing the AFC and AGC signal generation...83
9.4.2.5 Testing the keys..83
9.4.2.6 Testing the speaker...83
9.4.2.7 Testing the RF/IF rectifier..83
9.4.2.8 Testing the ambient light sensor...83
9.4.2.9 Testing the potentiometer...83

9.4.3 Software for the alarm clock..83
9.4.3.1 Date and time..83
9.4.3.2 DCF77 analysis..84
9.4.3.3 LCD operation..85
9.4.3.4 Adjusting date, time and alarm time with the keys..85

10 DCF77 AM direct receiver with gain-regulated OpAmp and ATtiny25.......................................86
10.1 Hardware of the regulated OpAmp receiver..87

10.1.1 Receiver hardware schematic...87
10.1.2 How the antenna circuit works...88
10.1.3 How the regulated OpAmp works...89
10.1.4 Serial receivers for display...90

10.2 Hardware of the ATtiny25 controller...91
10.2.1 Measuring the DCF77 signal...91
10.2.2 Generating and filtering the AFC voltage..92
10.2.3 Generation and filtering of the AGC voltage...93
10.2.4 Output of results...94

10.3 The software...96
10.3.1 Software download..96
10.3.2 Software overview...96
10.3.3 The AD conversion of the input signal..98
10.3.4 OC0A and OC0B adjustment: The AFC scan at start-up...99
10.3.5 The AFC in normal operation..100
10.4 Analysis of the DCF77 signals..100

10.4.1 Conversion of the DCF77 data bits to time/date...101
10.4.2 Checking the parity...103
10.4.3 Conversion of the DCF77 date and time to UTC..103

10.5 Serial transmission of results and status...103
10.5.1 Serial transmission in sync mode..104

Page 3 of 112

10.5.2 Serial transmission in async mode..106
10.6 Sync serial receiver and LCD display with ATtiny24..108

10.6.1 Necessary hardware...108
10.6.2 The software...109

10.7 Async serial receiver and LCD display with ATmega48...109
10.7.1 Necessary hardware..110

10.8 Async serial receiver and LED display with ATmega324...110
10.8.1 The LED display of the clock...111
10.8.2 Necessary hardware..111

DCF77 receivers
Of course: there are cheap (but also very expensive) DCF77 receivers available (at least in
Germany) and there is no need for home-brewing. So why built your own? Now, just be-
cause it is fun, and because you'll learn some RF basics, and as it is fine to handle RF by
yourself (and not to end as a RF lay person while hanging on your mobile all the time).
And if you live in some distance to Frankfurt/Germany: the commercially available re-
ceivers are so dump that you need some more amplification to get this signal and to build
your own atomic watch for it. And what about those that operate their commercial re-
ceiver in an environment that produces lots of very-long wave signals, such as Chinese
switching power supplies or energy saving lamps? The commercial receiver then is over-
whelmed by those signals, and does not find date and time in the air. Here you'll find re-
ceivers that are small enough to work correct even under these adverse circumstances.

DCF77 how-to
DCF77 is a transmitter that "officially" (yes, there is a law on that) sends time and date in-
formation continuously. It transmits in the Very-Long-Wave band at 77.5 kHz. The time
and date information is encoded into 59 bits that are send within one minute, with the
60th bit missing (signaling that the minute is over). These bits are sent by temporarily re-
ducing the RF power of the transmitter down to 20% of its peak power for either 100 ms
(which is a zero bit) or 200 ms duration (which is a one bit). So, all you need to do is to

• detect amplitude drops and risings of the received RF signal,
• to measure the duration of those, decide whether they encode a zero or a one, and

to collect those bits,
• to measure the duration of pauses in the signal, where RF power of DCF77 is high,

and to detect pauses of 1.800 to 1.900 ms duration, when a minute change occurs,
• to re-arrange the 59 bits to extract BCD encoded

• minutes,
• hours,
• weekday (1 for Monday, etc., to 7),
• day,
• month, and
• year.

all for the minute that started after this long pause, and: yes, that can all be done
with standard CMOS gates, with two hands full of integrated circuits filling a Euro

Page 4 of 112

size board. Thanks to modern micro controllers that all fits into an 8-pin DIP IC
nowadays.

• displaying all this on a 1-, 2- or 4-line LCD.

That is all it needs. If you want to do that with a PC or laptop running a modern operating
system: forget it, you won't be able to get this modern operating system with its time-
sharing and window reporting system to count 100 or 200 ms long pulse durations. Better
use an ATtiny to do all this and transmit the date and time via a RS232 or whatever serial
interface to the PC or laptop. An ATtiny works with less than one percent of the clock rate
of a PC but is fast enough to react on even shorter pulses. Modern operating systems are
neither designed nor able to react fast enough on those events.

Unable to program AVRs? Not willing to learn assembler programming? Yes, you can do
that all with two hands full of CMOS-ICs. The time and date bits of DCF77 are 59 bits long,
for that you need eight 8-bit shift registers. If you skip the first 20 bits, you need ”only”
five of those. To check the parity bits of the minutes and hours, you need two parity gen-
erators. If you want to check the parity of the 23 date bits as well, you need additionally
three of those. If you want to display that on 7-segment digits, you'll need at least ten 4-
bit-latches-and-decoders, if you want to see the seconds and the weekdays as well: addi-
tionally three of those and an 8-bit counter. If you want to be alarmed at a certain time,
you'll need additional counters and comparers. And if you want your watch to function cor-
rect even when DCF77 is not transmitting due to local lightning, you'll need at least ten
additional CMOS-ICs. And, due to the current-hungry 7-segment displays, at least 500 mA
power supply. In contrast to that: an ATtiny25 in an 8-pin-package and an ATtiny24 in a
14-pin-package, together with a four-line LCD do that all with less than 10 mA (mainly for
the LCD's backlight). With a small rechargeable battery of 1,200 mAh you can operate this
for days. No: do not fall back to the Eighties, it is not worth it. Just learn how to program
AVRs and to write assembler programs rather than investing your time and brain in boring
CMOS wiring.

On this web page you'll find all you need to receive, detect and decode the time and date.

DCF77 receiver basics
77.5 kHz is a bit faster than audio signals, but still is in the same range (ok, bats do not
hear that any more). So RF of this frequency is less sensitive and does not need special RF
transistors or high-speed opamps. So you can just amplify it with any transistor or opamp
type, such as a 741. Ideal for a beginner in RF.

Special is only that the signals come in with a rather small voltage. Well below a standard
dynamic microphone with its 5 mV. Here, at a distance of 28 km to Mainflingen near
Frankfurt, a ferrite antenna
tuned with a capacitor to
77.5 kHz produces a sine
wave with roughly 5 mV,
which already can be seen on
an analog oscilloscope. But at

Page 5 of 112

larger distances, only a few micro-volt come from the ferrite, associated with lots of (ran-
dom or systematic) noise.

That is how the two amplitudes, in a high and a low phase, look like over time during one-
and-a-half sine waves. The information is encoded in that amplitude (amplitude-modu-
lated, AM), so we have to detect the amplitude's height to decode the information therein.

That is why we cannot use amplifiers that have no gain regulation: either we have a too
small gain and our amplitude rectifier does not see a signal at all, or we have a too large
gain: then we get a rectangle, which has nearly the same peak voltage on the rectifier, no
matter if the amplitude is high or low. And our information is lost in both cases.

So, we have to regulate the gain of the amplifier (automatic gain control, AGC), so that
the amplified signal produces enough rectified voltage in high phases, but not too much so
that the rectifier starts clipping the amplitude in that high phase. Just enough, so that we
detect the loss of amplitude in the low phase. And: the gain regulation has to be slowed
down, so that it doesn't increase the gain during the low phase, which can last either 0.1
or 0.2 seconds. The delay in regulation shall be longer than one second or longer.

Fortunately a simple ferrite rod, with some tens of windings of copper wire, and a capaci-
tor of a few nF capacity are a very good RF filter. At resonance, its resistance is extremely
high (approx. some 100 kΩ) and its related bandwidth is rather small (a few kHz). So a
ferrite rod is

1. a good receiver for that kind of RF,
2. a good collector, as it collects RF over its complete length,
3. a very good amplifier as it increases RF voltages if in resonance (not so much the

overall power due to the high resistance but only the voltage), and
4. also a good selector, suppressing 50/60Hz stray voltages as well as your local short

wave transmitter signal with a few Megawatt power.

Do not try ferrite-free air coils, they do not have enough inductivity (or otherwise are ex-
tremely large for that low frequency).

Unfortunately ferrite rods are sensitive to directions: if your ferrite points to the wrong di-
rection, you'll get nothing but noise and nothing to derive time and date from. This web
site also has a solution for that, see below.

As the distance to the transmitter and the direction of the rod towards DCF77 play a role,
and also propagation issues of the VLW band might play a role, an amplifier with a fixed
gain, e.g. in my case 1,000 would be enough, is not a good idea. It is either too high, by
that overloading the AM rectifier stage and no amplitude drop can be detected or it is too
low and does not produce a DC signal, if its peak voltage is below the diode's forward volt-
age of 0.2 or 0.3 V. So, a good DCF77 receiver has to have a gain regulation. That makes
a 741 opamp or a simple transistor amplifier a very bad choice.

Gain regulation should be able to regulate the amplifier gain by at least a factor of 10 (in
the near-field) or 100 (in larger distances). And it should be automatically follow the
changing signal strength, making it an AGC (automatic gain control). It should not be fast
enough for the 100 ms or 200 ms long amplitude drops, so that gain regulation would
mask the incoming bits, but should rather be able to average the signal over a few sec-
onds.

Page 6 of 112

If you are in a distance of several 100 km or even beyond 1,000 km, you need much more
gain than 1,000 to get the DCF77 signal. If your necessary gain is in the 10,000 to
100,000 range, an issue plays a role that any amplifier of that gain has: stray signals can
oscillate the amplifier. This is especially the case if each of your amplifier stages reverses
the signal by 180 degrees (as usual transistor amplifiers do) and your third stage strays
its signal back into the first stage's input: a perfect oscillator is working then. Self-oscilla-
tion is an issue, even at only 77.5 kHz and even if you regulate the gain to down below
the oscillation point. So, the direct receiver always has a limited gain.

As, unfortunately, your ferrite rod is a perfect receiver for those stray signals, it helps to
do the amplification of the signal on a different frequency than that the ferrite rod is tuned
to. Here, the superhet principle comes into play: it mixes the input frequency (77.5 kHz)
with an oscillator frequency (in that case e. g. 110.268 kHz), filters the subtracted product
(in that case 32.768 kHz) and amplifies this. As 32.768 kHz is far away from the ferrite
rod's 77.5 kHz, it does not interfere with that. And: this intermediate frequency (IF) can
be filtered by using easily available xtals (for watches), so that even 10 or 20 Hz below or
above signals are perfectly suppressed. This also disables noise and disables interfering
signals from power supplies and energy saving lamps. This web site shows how to do that,
see below.

For the beginner in RF, a short intro to resonance might be useful. A coil is a resistor for
AC: its resistance is depending from the AC's frequency and can be calculated by the fol-
lowing equation:

ZL = 2 * Π * f * L

with Z being in Ohms (Ω), Π is 3.141592654, f in Hz and L in Henry (H). The resistance
increases if the frequency or the inductivity increases.

The same for capacitors, but in that case it is reversed:

ZC = 1 / 2 / Π / f / C

Z again in Ω, f again in Hz, C here in Farad (F). The resistance decreases if f or C in-
creases.

The term 2 * Π * f is called circular frequency and abbreviated as small omega (ω). With
that the above formulas are as follows:

ZL = ω * L

ZC = 1 / ω / C

At resonance both the inductive and capacitive resistance is equal, ZL = ZC, making

ω * L = 1 / ω / C

In case of resonance, the inductive and capacitive resistance increases with a quality fac-
tor, depending mainly from the normal (Ohm's) resistance of the coil. This factor is
around 100 for a normal coil or 40 for a high-Ohm coil. That is why the ferrite resonant
circuit has such a high resistance at 77.5 kHz.

Arithmetic says that you can calculate

Page 7 of 112

inductivity by L = 1 / ω2 / C

capacity by C = 1 / ω2 / L and
frequency by f = 1 / 2 / Π / √(L * C)

That is all that you need in the math section.

What you get here

Overview on what is described here

Here are some descriptions of home-brew-able receivers for DCF77. Lots of different
tastes are covered here.

A cross antenna for DCF77 (described here), that makes reception of DCF77 indepen-
dent from directions towards Mainflingen near Frankfurt, where the transmitter is located.
A 90° and a 45° version has been designed, built and tested. The antenna includes a FET
stage that serves as a buffer between the high-impedance ferrite antenna and the capaci-
tor(s) that form a resonant circuit and the lower impedance of the following amplifier
stages. To adjust the frequency of the resonant circuit exactly to DCF77's transmit signal
on 77.5 kHz an automatic frequency control (AFC) has been added, consisting of a vari-
able capacity diode (varactor), a capacitor and a resistor. Adjusting the AFC voltage allows
to vary resonance frequencies between 77 and 78.5 kHz (for the 90° cross antenna and
over a larger bandwidth for the 45° cross antenna. This brings an elevated noise immunity
and a higher RF sensitivity.

A direct amplifier for
DCF77 RF with tran-
sistors (described
here): amplifies the
77.5 kHz RF by several
thousand-fold to allow
reception in the far dis-
tance to the transmit-
ter. Works with stan-
dard electronic parts
and does not use spe-
cial parts. Two stages
amplify the weak sig-
nal. Of course, the gain
of the amplifier can be adjusted. This is done with diode attenuators, so that the working
conditions of the transistor amplifiers remain unchanged. The diode's currents can be
manually adjusted or via a PWM plus a PNP buffer stage.

As an alternative to transistorized stages a TCA440 amplifier can be used (described
here). This provides even more gain. The oscillator and mixer, also integrated in a
TCA440, are not used, only the IF amplifier stages. The gain can be easily adjusted by ap-
plying increased voltages on the respective input pin. The TCA440 has an auxiliary output
to drive a mechanical meter for the gain (leave that open if you don't need it). While the

Page 8 of 112

number of necessary parts is smaller than of a transistorized version, the accessibility of
TCA440s is also smaller as the circuit is not in production any more.

A superhet receiver with a TCA440 (described here): Reception and pre-amplification
are on a frequency of 77.5 kHz, then mixed with an oscillator frequency to form a
32.768 Hz mixer product. Either 77.5+32.768 or 77.5-32.768 kHz can be used for that.
The internal oscillator is working with an external coil and capacitor and works on
110.268 kHz. The mixer signal is then filtered with an LC circuit and 32.768 kHz
crystal(s). That is fed into the IF amplifier. Its output, again filtered with a LC resonant cir-
cuit, is rectified and produces an amplitude dependent DC signal. The AGC of the IF ampli-
fier works as described above.
In a subversion, the TCA440's oscillator input is driven with a crystal-derived sine wave
signal of 110.294 kHz, produced by an AVR ATtiny25, which is clocked with a 15 MHz xtal
oscillator and divides this clock by 68 and by 2. Rectangle to sine wave conversion uses a
3-stage RC filter for the positive and negative output, which are fed into the TCA440's os-
cillator input. The box on the bottom shows this concept.

In another subversion the oscillator signal for the TCA440 is generated by a regulated LC
oscillator. A crystal driven ATtiny25 measures the frequency of the LC oscillator and regu-
lates the frequency by use of a PWM and two varicap diodes.

The rectification of the DCF77 signal from the direct receivers as well as of the 32 kHz IF
from the superhet can be made with diodes. An alternative solution would be an ATtiny25
rectifier (described here).

An ATtiny25 has anything under control (described here): it measures the DC coming
from the rectifier, derives the AFC and AGC voltages with two PWM channels and detects
amplitude losses (zeroes and ones from DCF77. It decodes those zeroes and ones, derives
the time information from that, detects errors in the DCF77 signals and sends all informa-
tion over a tw-wire interface to an ATtiny24.

An ATtiny24 displays all the information received from the ATtiny25 on an attached 4-line
LCD (described here).

As a bonus application I added a direct receiver, described here, that does it all in a small
Tiny25: to detect the amplitude of DCF77, to generate voltages that control the frequency
of the input LC ferrite circuit as well as the gain of two operational amplifiers, to decode
the DCF77 amplitude drops, to convert it into time and date information with extensive er-
ror detection and to send the decoded information either over a synchronized serial inter-
face or to transmit these over an asynchronous serial interface.

Page 9 of 112

For displaying the information four different opportunities are presented, that span from
displaying the received time and/or date information

1. with an ordinary terminal program over a standard RS232 interface, or

2. to receive it in async mode and synchronize a 7-segment display, e. g. with a large
LED display, with that, or

3. to receive it asynchronously and display it on an LCD of programmable size (single,
double or four lines, 8/16/20/24 characters per line), or

4. to receive it synchronously and display it on an LCD with programmable size.

Links to other documents

The following additional documents can be downloaded from the website:

• All calculation sheets in one Libre-Office spreadsheet document here (24 sheets,
1,36 MB).

• All drawings in one Libre-Office draw document here (25 drawings, 108 kB).

Note that in sub-pages of the website additional Libre-Office documents are available for
download.

Page 10 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr_drawings.odg
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr_calculations.ods

Path: Home => AVR overview => Applications => DCF77 receivers ==> Cross Antenna

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

DCF77 cross
antenna

1 DCF77 cross antenna
The German date and time standard transmitter signal of DCF77 can be received all over
Europe, but signal strength is strongly depending from the antenna direction. To get inde-
pendent from the direction this cross antenna has been developed and tested.

I tested two versions of the antenna. Both consist of two coils on two different ferrite rods.
In the first version, those two ferrite rods are mounted in an angle of 90°. In the second
version those are mounted in an angle of 45°. By angling, one of the two rods always has
reception, no matter what angle the DCF77 transmitter has towards the antenna rods,
even if the other rod is completely misaligned. The signal of the sum of both coils is never
zero, the misaligned coil just does not add to the total signal.

The second version, with 45°, has been developed because two horizontal 10 cm rods do
not fit into many plastic casings. In small casings (e. g. with 5 cm) the first rod can be
placed on the bottom while the second rod can be placed on the top of the casing, both
having 45° offset to each other. The nearer the angle of both towards 90° they come, the
smaller is the angled amplitude difference.

That is how the sig-
nal strength varies in
different angles, for
a single rod/coil and
for two rods/coils in
90 and 45° direction.
In the cases with
two rods the recep-
tion strength is
never zero but varies
between 0.5 and 0.7
(90°) resp. 0.92 and
0.35 (45°).

To test the two rods
a little further, I have given them different windings. For the 90° version I covered 45% of
the 10 cm ferrite rod with copper enameled wire (0.255 mm) in single layer fashion (just
because the two rods then can be tied together in a 90° angle without too much interfer-
ence between the two coils). That meant 110 windings for each coil. In the second version
I covered the complete rods with single-layer wire, leaving 0.5 cm on both ends uncov-
ered. That meant approximately 350 windings for each coil.

Page 11 of 112

https://en.wikipedia.org/wiki/DCF77
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

Tying the two coils together and angling them has interesting effects on the inductivity of
the single coils and on their sum. In the 90° case the inductivity of the crossed coils is
smaller than the sum of the inductivity of both, while in the 45° case their inductivity in-
creases. If, in the second case, their mounting in a larger distance (e.g. 10 cm between
both) is chosen, this effect will be much smaller than with both ends tied together.

1.1 Mounting
The 90° an-
tenna (left
picture) is
mounted
like shown.
First the rod
is shrinked
with a piece
of plastic
cover to get
some dis-
tance be-
tween the rod and the wire. The 10 cm rod is then covered with 110 windings of
0.255 mm copper wire over 45% of its length and both wire ends are fixed with plastic
tape. The two rods are then tied together with two crossed cable ties so that the angle is
approximately 90°. The inner ends of the two coils are soldered together.

The 45° antenna is mounted similarly but the whole rods are covered with wire (except
5 mm on both ends). For each coil one needs approximately 13 m of copper wire. Both
ends are fixed with a piece of shrink sleeve. Both ferrite rods/coils are mounted on a blank
100-by-100 mm epoxy plate and fixed with cable ties. The near ends of both coils are sol-
dered together.

1.2 Measuring the coils
The coils have been mea-
sured with two different
methods:

1. with a FET and a
variable capacitor
equipped grid dip
meter,

2. with a CMOS oscil-
lator.

1.2.1 Measuring
results with a grid
dip meter

With my grid dip meter I
installed the coil and varied the FET oscillator with the 2*365 pF variable capacitor. From

Page 12 of 112

previous experiments with fixed inductivities a capacity of 200 pF (in full capacity) resp.
23 pF as smallest capacity has been determined.

The two 45° coils oscillated with 217.64 resp. with 221.75 kHz under full capacity, result-
ing in inductivities of 2.67 resp. 2.58 mH. The sum of both would then be 5.25 mH.

1.2.2 Measuring results with a CMOS oscillator

This schematic was used to determine
the inductivity in a different method.
Measuring with this resulted in signifi-
cantly larger inductivities of 3.87 resp.
3.79 mH, which would result in a sum
of 7,66 mH.

Measuring the 45° coils tied together
resulted in a significantly higher induc-
tivity: 9.58 mH. That's what you get
from nearing the coils in an angle.

1.3 Buffer stage

This is the schematic for
the buffer stage (the 45°
version). The antenna
circuit is formed with the
stacked coils and a ca-
pacitor of 330 pF. The
signal goes to the gate of
a N-FET (any N-FET type
can be used). The drain
and the source of the N-
FET are connected to two
resistors of 1k (to the fil-
tered operating voltage
and to ground, the HF is
coupled with two 1nF ca-
pacitors (ZC = 2.5 kΩ) to

the amplifier stages (symmetric output).

Page 13 of 112

Note that the 90° version needs a larger capacitor of 2.7 nF due to the smaller inductivity
of the coils.

The buffer stage with the FET is necessary to protect the sensitive properties of the LC
resonance circuit. The large coil above has an inductivity of 9.58 mH. That means that the
coil has, at 77.5 kHz, an inductive reactance of ZL = 2 * Π * f * L of 4,66 kΩ. If the coil is
in resonance with the capacitor, the reactance of the LC circuit is by a factor of Quality
larger than this, the circuit has more than 466 kΩ. That means that the resonance curve is
very narrow, suppresses nearby noise sources and the sensitivity is very high.

Hence, it would be not a good idea to attach a stage with a lower resistance to it. This
would seriously drop the LC circuit's high sensitivity and would broaden the resonance
curve. The FET stage does not amplify, but only keeps the high entry resistance and pro-
vides a reduction of the resistance at its output. The high quality of the LC circuit on its in-
put is protected and kept.

1.4 AFC Frequency adjustment
The resonance frequency of the cross antenna and the 330pF capacitor can differ slightly
(temperature, iron in the near field, etc.). Therefore two varactor diodes are attached to
the antenna circuit, both in reverse direction (anti parallel). I have used two of the three
diodes in a TOKO KV1235Z, use of other types such as BB112 (double diode) is possible.
The diodes should at least have 100 pF at 0.7V (medium wave types).

Depending from the AFC voltage (0 to 5 V) half of the capacity of the regulating varactor
lies parallel to the antenna circuit. This allows for a sensitive regulation of the resonance
frequency and adjustment to 77.5 kHz. You can use a potentiometer, a trim resistor or a
digital PWM to adjust that. Because the varactor diodes are operated in reverse direction,
no current is drawn from the diodes.

This is approximately the
capacity of the KV1235Z
diode versus the reverse
voltage applied. As the
original curve in the
available datasheets
looks a little bit weird, I
have interpolated it with
a polynome (see the cal-
culation sheet “FET-RX”
in the LibreOffice Calc
file. So do not expect
this to be correct.

Page 14 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_calculations.ods
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_calculations.ods
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_calculations.ods

This is the capacity of
the varactor diode and
the resonance fre-
quency of the cross an-
tenna versus the AFC
voltage applied. Two
combinations are con-
sidered here:

• a large coil of
9.58 mH and a
small fixed cap of
330 pF (red
curve),

• a small coil of 1.5 mH and a large fixed cap of 2.7 nF (violet curve).

The range that the combination of the large coil and the small fixed cap allow is fine, but
the small coil with the large fixed cap covers only a very small range. Note that two of
those varicap diodes are anti-parallel, so their capacity is halved.

In this case we can apply the varicaps a little
different to enlarge the range: we put three of
them in parallel and reduce the fixed cap to
2.2 nF. The orange curve in the diagram
shows that the range is now comparable to
that with the large coil.

1.5 Properties of the cross antenna
By adding two coils with only one capacitor in the antenna circuit a phenomenon occurs
that has to be accounted for in frequency adjustment: both coils have a combined induc-
tivity as if they were one but each coil has its own additionally. This is approximately half
of the combined inductivity and produces its own resonance. If the capacitor is larger, this
second resonance can be reached. In the 90° case this second resonance cannot be
reached because the varactor diodes do not have enough capacity. But in the 45° case,
with a large inductivity and a smaller capacitor, the varactor diodes can well reach this
second resonance points. In order to not stick to this second resonance point (with its sin-
gle direction property) the voltage of the varactors should always start from +5V down-
wards, even if the signal strength is larger with the larger capacitor (e. g. when one of the
coils is in perfect direction towards the transmitter).

This second resonance could have been avoided if both coils get their own (larger) capaci-
tor. But that would make frequency adjustment via AFC more complicated because one
needs two PWMs for AFC or a small fixed capacitor exactly compensating the difference of
the inductivity of each coil.

Practice has shown that this antenna is very selective. While my energy saving lamp
transmits at roughly 80 kHz, and with that strong signal confusing commercially available

Page 15 of 112

DCF77 receivers so that they do not work in less than 50 cm distance to the lamp, the
cross antenna is not sensible for that. Whether

• this has to do with the varactor diodes that allow exact resonance to 77.5 kHz
(maladjustment to the lamp's frequency shows a much stronger signal there), or
whether

• the bandwidth of the LC circuit is indeed that narrow (has to be, otherwise the
80 kHz would still come in even if adjusted to 77.5 kHz), or whether

• commercially available DCF77 receivers have no N-FET buffer stage but couple the
signal to a transistor, by this reducing the high resonance resistance of the LC cir-
cuit and increasing its bandwidth, or whether

• those do not have an AFC to exactly adjust the frequency, and can well be far away
from 77.5 kHz,

can not be determined exactly, but this effect alone is a good argument for having a
home-brewed receiver instead of the cheap mass ware.

The cross antenna is very insensitive to direction changes. The amplitude drop down to
0.35, when in maximum misalignment, is simply compensated by a small change in the
AGC voltage that regulates the gain of the receiver.

Because I do not own a mechanical compass (and the one in my Android mobile is a use-
less equipment here because the term "North" is a very wide field for that equipment) I
am not able to provide exact directional data on the cross two antenna versions. Sorry for
that.

©2019 by http://www.avr-asm-tutorial.net

Page 16 of 112

http://www.avr-asm-tutorial.net/

Path: Home => AVR overview => Applications => DCF77 receivers ==> Transistor amplifier

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

DCF77 transistor
receiver

2 Transistorized DCF77 receiver amplifier
An RF amplifier for DCF77, transmitting on a frequency of 77.5 kHz, has to

• amplify the antenna signal by at least 10,000 fold,
• avoid self-oscillation of the amplifier by regulating its gain (AGC), and
• has to drive the final rectifier stage with enough RF power.

2.1 Amplifier and driver for DCF77 RF

The amplifier has two
stages, each equipped
with a usual NPN small
signal transistor (you
can use any available
type):

1. The first stage is
a voltage ampli-
fier with a reso-
nant LC circuit
for 77.5 kHz in
its collector. To
reduce load influ-

Page 17 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

ences from the next stage on the resonant circuit, the capacitor of the LC is divided
into a large and a small capacitor and so divided by 4.5 with that capacitive divider.

2. The second stage is a similar voltage amplifier but with a slightly smaller inductivity
and larger capacitors. As the next stage is not interfering the LC resonant circuit,
no voltage division is made here.

The gain of the two stages is
extremely high, due to the
very high resistance of the LC
circuit in the collector at res-
onance (approx. 161 kΩ in
stage 1 and 70 kΩ in stage
2). And this high gain is fre-
quency-specific. Each stage
amplifies the signal by
roughly 1,000-fold.

I also tried an additional
stage of a similar design.
With that stage I had to reduce the gain because of self-oscillation. I tried the diode atten-
uator as well as reducing the emitter capacitors and increasing the emitter resistors: it is
all the same, the applicable gain of stage 3 is of no use, so it does not make any sense to
add it.

The diode attenuator on the first and second stage input works as follows. Increasing the
current through the diodes (red curve) reduces their resistance, which is

R = VDiode / IDiode.

At the highest current here, IDiode is (5 - 2 * 0.65) / 1 k = 3,7 mA, so the diode resistance
is RD = 0.65 / 3.7 = 176 Ω. As both diodes are parallel to ground (the upper one direct,
the lower one via the 100nF-capacitor) the diodes are parallel and the resistance of the
two parallel diodes is 88 Ω. With a capacitor of 1 nF, its capacitive reactance ZC is ZC = 1 /

2 / Π / 77500 / 1E-9 = 2,053 Ω.

The capacitor and the two
diodes make up a resistor di-
vider that attenuates the sig-
nal to the 0.041-fold, or with
a factor of 24.4. Both attenu-
ators reduce the gain of the
amplifier by the 595-fold.

The diagram shows the atten-
uation of a single stage (red
line) and of the second stage
(blue line) of the two-stage
amplifier versus the AGC
voltage applied. The AGC

Page 18 of 112

voltage reduces the gain of the two stages smoothly (note that the PNP drive stage
reaches saturation at 2.8 V, so the curves are theoretical above that!).

In stage 1 the diode attenuator following adds 1 nF to the C12 capacitor. That reduces the
resonance frequency of the LC combination slightly. This effect is calculated in the Libre-
Office spreadsheet here. The resonance frequency shifts from 77.8 down to 77.15 kHz,
still is within the bandwidth of DCF77 and has no negative consequences.

The same calculation sheet calculates the influence of the emitter-base capacitor of the
transistor, in this case the stage 2 capacity. This has positive consequences as it reduces
the resonance frequency down from 77.95 to 77.82 kHz. Because the tolerances of the
parts used have a much higher influence, this is rather of an academic nature.

The signal of DCF77 is highly amplified, the gain can be reduced by applying current
through the diode attenuators. I use a trim resistor which drives the base of a PNP transis-
tor with 1 kΩ on its emitter (with the collector on ground) to get enough diode current.
This stage is also required when driving the AGC with a pulse-width modulated signal from
an AVR. This allows a fine tuning of the gain.

In a second test configuration I attached the base of the PNP driver to a potentiometer re-
sistor of 100 kΩ, with both ends attached to the operating voltage. With the potentiometer
the gain can be adjusted very sensitive. If you use manual adjusting, it can be recom-
mended to reduce the variability of the potentiometer with additional fixed resistors to re-
duce the sensitivity.

The design of the PNP driver stage with 1 kΩ to plus and two 1 kΩ before the two diodes
of the attenuators, reaches saturation when the AGC exceeds 2.5 V: the diode current is
not rising any more because the two diode pair currents exceed the driver current through
the 1kΩ to plus. The diode current (in the diagram in green, right side scale) is then con-
stant, limiting the possible attenuation.

Because I live in 28 km distance to the DCF77 antenna and so have strong reception sig-
nals, the attenuation with the 1kΩ resistors was large enough to reduce the field strength.

Page 19 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr_calculations.ods

If you live even closer to Mainflingen,
you might need more attenuation,
reduced resistors of 470Ω and 220Ω
are shown in the diagram.

Or, you can decide to use this Mer-
cedes-Benz-type driver with two
opamps, which drives the diode cur-
rents in a super-linear manner (from
0.0 V AGC voltage on), with max.
12 mA diode current and to achieve
an attenuation of 1,514-fold with
that. But this is the version for the
electronics lover only.

2.2 Rectification
The rectification can be made with a diode rectifier or an ATtiny25 controller (see chapter
2.2.2 for more and chapter 7 for a detailed description).

2.2.1 Diode Rectifier

This here is the diode rectifier for
the amplitude-modulated RF signal.
Two Germanium or Schottky diodes
rectify and double the DC made
from the RF, with two capacitors of
470 nF. The resistor of 33 kΩ un-
loads the capacitors during the am-
plitude drop of the DCF77 signal,
with a half-life time of approxi-
mately 10 ms. The following RC with R=10kΩ and C=470nF reduces humming of the
77.5kHz signal, and a clean signal, to be fed into an ADC stage of an AVR.

The first stage decouples the diode rectifier from the second stage of the amplifier, so that
the resonance circuit of the second stage is not overloaded by the low diode resistances.
This stage has no amplification, it just reduces the source impedance.

Page 20 of 112

This is the produced
DC voltage for differ-
ent AC voltages. The
rectifier does not
work below 0.4 Vpp
input voltage due to
the diodes. But it
provides enough DC
voltage for normal
RF or IF signals.

This is the unload
curve of the RC com-
bination with
C=470nF and
R=33kΩ. With t =
0.69*R*C = 0.01 s it
is steep enough to
detect the 100 resp.
200 ms long amplitude drops when DCF77 transmits a zero or a one.

In red the delayed drop on the R=10kΩ/C=470nF filter can be seen. It is slightly delayed,
but drops down with a similar speed like the voltage on the input.

Calculation of those
curves was per-
formed with the
OpenOffice spread-
sheet here. The
sheet SimRectifier
simulates for a fre-
quency of 77.5 Hz
and for the diverse
parts of the rectifier
and for a selectable
resolution. Fields
that require an input
are with a green
background color. It
simulates

• the voltages
on the two rectifier capacitors (in columns C and D and their sum in column E,

• the drop in amplitude with a selectable level, starting at a selectable time, and
• the voltage on the RC filter output.

From that simulation the ripple of the voltage on the rectifier capacitors was also calcu-
lated. It is below 0.25 mV and remains below one digit of a 10 bit ADC. Only if the capaci-
tor values down to one tenth or the reduction of the resistor down by a factor of 20 yields

Page 21 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_transistor/dcf77_rectifier.ods

one ADC digit. This would increase the amplitude drop speed, but would also decrease the
voltage level.

Even though the rectifier RC does not produce humming I added the 10k/470nF RC filter.
In practice humming was larger than simulated here, so this filter was necessary for a
clean signal.

The rectifier hardware and the calculation tool can also be used for smaller frequencies,
e. g. for the 32.768 kHz IF of a superhet. It doesn't work with an IF of 455 kHz or
10.7 MHz, though.

The amplitude drop
when receiving ze-
roes and ones and
during the 2-second
long missing drop
when the minute is
over leads to a re-
duction of the long-
term average of the
signal, when aver-
aged over a time pe-
riod of longer than
one minute (as done
in an AVR or in a
long-term RC filter). The following parameters were used in this simulation:

• Signal DC of
• 2 V without amplitude drop,
• 0,4 V with amplitude drop,

• averaging by an RC filter of
• R=56 kΩ,
• C=220 µF.

with a time constant of t = 8,5 s.

Such a RC combination would be chosen if the DCF77 signal would be used to adjust the
gain of the RF or IF amplifier, e. g. in a TCA440 or for a diode attenuator. In those cases
the reception of a zero or a one shall not lead to a relevant gain adjustment.

One can see that the average voltage is at 1.85 V (approx. 93% of the 2 V on the input)
and differs only by +/-10 mV during a zero or a one. During a minute change, the level
change is slightly higher and around +/-25 mV.

From that one can see that long-term averaging (via software or with an RC filter) is an
appropriate method.

2.2.2 Rectifier with an ATtiny25

The rectification with an ATtiny25 controller is in detail described in chapter 7. The assem-
bler software for the ATtiny25 can also be found there.

Page 22 of 112

This can directly be attached to the second stage of the amplifier and does not need an
emitter follower like the diode rectifier, due to high resistance of the ADC3 input stage in
the ATtiny25.

The signal of the second amplification stage is fed to the AD converter of the ATtiny25.
This measures the amplitude of the signal with a very high sampling frequency, rectifies it
(by subtracting 0x0200 from the 10-bit ADC result and inverting the result if negative =
rectification), detects the maximum from a large series of measurements (256), averages
those over 16 maxima, divides it by 2 and runs the 8-bit TC1 with that in PWM mode.

TC1 produces a pulse-width modulated signal that is averaged by a three-stage RC filter,
that produces a stable DC voltage with a very low ripple of between 0 and 5 mV, depend-
ing from the amplitude on the ADC3 input. This DC is transferred to the decoder con-
troller's AM in that derives a) the DCF77 bits and b) the AGC and AFC signals from that.

Do not try to integrate the functions that the tn25 rectifier performs into the decoder's
controller: the very fast ADC sampling rate eats up the complete clocking of the controller
with 8 MHz, so that there is no time left for the complex functions of the decoder.

The Duo-LED that can be attached to the rectifier controller (red/yellow or red/green 2-
pin-Duo-LED, red anode to OC0B, resistor of 270Ω) can serve as a signal strength indica-
tor (with increasing green brightness, if signal strength is too large to regulate the ampli-
fier it turns fully green). If you do not need that you can switch this off by changing the
software's configuration.

2.3 Automatic regulation
For the automatic regulation of the
frequency (AFC) and of the gain
(AGC) as well as for the complete de-
coding of the DCF77 signal, including
a serial interface for transmitting the
data to another controller that dis-
plays date and time received, a con-
troller of the type ATtiny45 has been developed. This reads the rectified voltage, analyzes
the voltages, derives controls and adjusts AFC and AGC via two PWM channels and, by de-
tection and checking of voltage drops, decodes the zeroes and ones received from DCF77.

The description of that TN45 controller can be found here.

Page 23 of 112

2.4 The pass-band curve of LC filters
In order to determine the filter properties of the two LC resonance circuits in the collector
of the amplifier stages a generator was designed and built that allows to measure those
filters around 77.5 kHz. It produces sine waves with adjustable frequencies between 70
and 80 kHz. The amplitude of the oscillator is 4 Vpp at an operating voltage of 5 V.

Those are the filter
curves with different
coupling capacitors.
The maximum of
resonance with a
330pF capacitor is
not at 79 kHz (as
calculated) but by
5 kHz lower at
74 kHz. This is, on
one hand, due to
the coupling capaci-
tor (when fully in
parallel 70.2 kHz),
but is also due to straying effective values of L (5%) and C (10%).

The curve is rather broad and not very steep. It covers +/-2.5 kHz for the amplitude drop
down to half (3 dB).

When decreasing the coupling capacitor to 68 pF (with a ZC of approximately 30 kΩ) the

resonance frequency increases. Reactance of the LC is larger than 11 kΩ at resonance.
Due to the high bandwidth of the LC circuit it does not make much sense to adjust the two
LC circuits for 77.5 kHz. Compared to a simple resistor in the collector, an un-adjusted LC
circuit is an immense advantage. Especially RF far away of the 77.5 kHz (short wave,
90 kHz power supplies, etc.) are not amplified.

Those who need it more narrow, because their power supply, energy saving lamp or old
valve TV transmits at 80 kHz, can use a superhet with a more narrow filter, as also de-
scribed on this web page.

This is the transistor amplifier on the breadboard. Make sure that the cross antenna is at
least in a distance of 15 to 20 cm of the inductivities to avoid feedback and self-oscillation.

Page 24 of 112

©2019 by http://www.avr-asm-tutorial.net

Page 25 of 112

http://www.avr-asm-tutorial.net/

Path: Home => AVR overview => Applications => DCF77 receivers => TCA440 amplifier

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

DCF77 TCA440
amplifier

3 A DCF77 receiver direct amplifier with a
TCA440

Lots of parts are needed for a gain-adjustable receiver amplifier for 77.5 kHz (see here).
So using an integrated circuit can reduce the number of necessary parts. As currently AM
radio reception are slowly dying out, the production of such ICs is very limited. There are
only ICs in production, that

• include AM and FM receivers in one chip (e. g. CD2003 and many more). For DCF77
the FM part is unnecessary and consumes current for nothing,

• offer very primitive amplifiers without gain regulation, unusable for changing volt-
age levels (e. g. TA7642 ZN414), or that

• are unavailable in normal electronic shops (such as the MAS6181 or the TDA1572),
or that

• require a large number of external capacitors to work (e. g. SA602/612).

The way out from that dilemma is to use ICs that are not produced any more but are still
available in specialized shops. Old fashioned AM superhet ICs fit our needs for DCF77 re-
ception perfectly. For a direct receiver concept, only the internal pre-amplifier, oscillator
and mixer is unnecessary and has to be disabled. The integrated IF amplifier, equipped
with a gain control input pin, can be used to amplify the 77.5 kHz directly with enough
gain.

Here the ancient TCA440 is used. It needs only a few external components. It is still avail-
able in specialized electronic shops, search for it on the internet.

Page 26 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

3.1 The TCA440
The TCA440 integrates, in its 16 pin DIP case

1. it provides a differential amplifier on its pins 1 and 2, that can be used as a RF in-
put stage, its gain can be reduced applying positive voltages on pin 3,

2. it receives a symmetric oscillator frequency on its pins 4 and 5 and couples it back
on pin 6,

3. it has an additive mixer on board, with its outputs on pins 16 and 15,
4. integrates a gain regulated IF amplifier with symmetric inputs on its pins 12 and 13

and its output on pin 7,
5. has a gain amplifier stage on pin 9, that regulates the IF gain and has an output for

attaching an instrument to display field strength on pin 10.

The pins 14 (plus) and 8 (GND) provide the operating voltage. The IC integrates

• 34 transistors,
• 21 diodes, and
• 53 resistors.

Copying of this using discrete parts would be an extreme effort, filling a Euro sized board.

Additional data, the internal structure and applications as medium wave receiver can be
seen in the data-sheet by Siemens.

3.2 Schematic for a DCF77 direct amplifier with TCA440
The received signal
from the cross an-
tenna, with frequency
regulation and
buffered with an N-
FET from here is sym-
metrically applied to
the IF amplifier of the
TCA440. Pre-amp, os-
cillator and mixer are
switched off and are
not used here.

The output of the IF
amplifier goes to a
low-resistance (ap-
prox. 2 kΩ) resonance
circuit. The AM-RF is
then rectified with a
double diode rectifier
already described
here.

Frequency (of the cross antenna receiver) and gain regulation can be made using trim re-
sistors or with an ATtiny45 controller as described here.

Page 27 of 112

Note that the TCA440 has a gain of 1.0 if you leave the AGC input open. To wake-up the
TCA440, apply a lower voltage to the AGC pin, and he wakes up and gains.

That is how the amplifier
and rectifier is mounted
on a simple breadboard.

©2019 by http://www.avr-asm-tutorial.net

Page 28 of 112

http://www.avr-asm-tutorial.net/

Path: Home => AVR overview => Applications => DCF77 receivers => Superhet

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

DCF77 superhet
32.768 kHz IF

4 DCF77 superhet receiver with xtal filter
Those who want to have the Mercedes of a DCF77 receiver, home-brew themselves a su-
perhet with a crystal filter! The DCF77 receiver RF signal (e. g. from a cross antenna) of
77.5 kHz is

1. amplified in a pre-amp, then
2. mixed with an oscillator signal to form a different frequency (here: 32.768 kHz),

which is then
3. filtered with an LC circuit and a crystal, after that
4. amplified in an Intermediate Frequency (IF) amplifier, its output then
5. is again filtered with an LC circuit and rectified in a two-diode stage as shown here

with the generated DC filtered in an RC stage, and then
6. the DC is measured, checked and decoded in an ATtiny45 controller, with time and

date information serially transmitted to
7. be received, decoded and displayed on an´LCD.

With that, you can be absolutely shure that no one besides you (and me, of course) has
such a home-brewed Mercedes in its garage: it is unique and perfect.

4.1 Advantages of a superhet over any other concepts
Superhets are better than direct receivers because the Intermediate Frequency (IF) can
be filtered with a small bandwidth (here: of a few Hz). So any interferences from other
sources (random noise, strong RF from nearby short wave transmitters, from switching
power supplies or switched power saving lamps as well as all other electromagnetic fields
can be completely sorted out and eliminated. So it is possible to receive the DCF77 signal
in a very far distance and in a noisy environment, where other receivers do not work.

As the IF amplifier works on a different frequency, the IF signal can be amplified without
getting self-oscillation. This also makes it more sensitive than direct receiver concepts.

4.2 The superhet schematic
This is the schematic of the Mercedes.

The symmetric output signal from the cross antenna's FET buffer stage is fed into the pre-
amplifier stage of a TCA440 on its pins 1 and 2. The gain reduction of the pre-amp stage
on pin 3 is turned off. IF you are in the absolute near-field of DCF77 (say: less than
10 km) you can apply 1 or 2 V here to not drive the mixer stage into an overload.

Page 29 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

On the oscil-
lator pins 4
and 5 the os-
cillator signal
of 77.5 +
32.768 =
110.268 kHz
is supplied.
This signal ois
either gener-
ated in an LC
circuit (by us-
ing the oscil-
lator output
signal on pin
6, see here)
or with an
xtal oscillator
(see here).

The mixer
products are
filtered with a LC circuit made of a fixed coil of 15 mH and a capacitor of 1.5 nF. To filter
the only product of interest, the 32.768 kHz, one or up to three 32kHz xtals follow. The
properties of such a crystal filter are in detail shown here.

The output of the crystal filter is fed into one of the two symmetric input pins (pin 12) of
the IF amplifier, with the other input on pin 13 being blocked to ground potential via a 1µF
capacitor.

The emitter output of the IF amplifier on pin 7 is connected with a second LC combination
with L=100µH and two parallel capacitors of 220 nF and 15 nF. The signal is then fed into
a 2-diode rectifier and RC filter stage to yield the amplitude as DC. This is further mea-
sured and analyzed in a controller as described here. The superhet comes in two varia-
tions: with the oscillator signal

1. produced by a LC combination, or
2. with a crystal oscillator and rectangle-to-sine filter.

4.2.1 TCA440 with the internal LC oscillator circuit

If you want to use the built-in oscillator in the TCA440
the following is necessary. Prepare an 18mm ferrite core

with an AL value of 2,850 nH per winding2. The core can
be trimmed with a screw or with the trim capacitor to
110.268 kHz. Use a frequency counter or the rectified
DC to adjust.

Page 30 of 112

An alternative to that would be to choose a 14-mm fer-
rox cube core with an AL of 250 nH/w2. The components
change slightly, with a trimming range from 108.4 to
112.0 kHz.

4.2.2 TCA440 with an external oscillator

The previous documents on this had an error, the oscillator now works fine.

4.2.2.1 Concept using a crystal oscillator as basis

LC resonance circuits are slightly temperature sensitive, so that its frequency has to be
adjusted from time to time. Under long term operation and with some aging of parts, this
has some disadvantages. An alternative to the LC would be to generate the oscillator fre-
quency from a xtal-controlled base frequency, by dividing that with a fixed rate.

Of course, there are no 110.268 or 44.732 kHz on the market. This solution here uses a
xtal clocked AVR as a rectangle generator.

An AVR, here an ATtiny25, is clocked by an external xtal oscillator. Its timer/counter 0
works as a divider (in CTC mode), divides the clock frequency by a fixed rate and toggles
the compare outputs A and B on compare match. By starting outputs A and B with differ-
ent start conditions, it produces counter-phased rectangles. The rectangles are filtered
with an RC network, that yields sine waves that can drive the TCA440's oscillator inputs
with a symmetric sine wave signal.

4.2.2.2 Selecting the crystal frequency

Digital dividers can only divide by integer values. Therefore the xtal frequency, divided by
the divider, has to fit nearest to the desired TCA440 oscillator frequency. To find the near-
est fit I have listed all available xtals in a spreadsheet and did some calculations with
those.

In the table the higher (110.268 - 77.5 = 32.768 kHz as well as the lower (77.5 - 44.732
= 32.768 kHz are considered. The divider is calculated, the divider determined and the
factually generated frequency f is as well as its absolute deviation in percent and in +/- Hz
is listed. The table is available here as OpenOffice file.

The table holds a second sheet, listing xtal oscillators only. There are fewer, but also some
frequencies that are not available as discrete xtal. The output of the crystal oscillator is
connected to the ATtiny25's XTAL1 pin. The CLKOUT fuse can, but must not be activated.
The calculation sheet "xtal_oscillator" lists that. In this mode the ATtiny25 can be operated
with 5 V, the reduction of the operating voltage is unnecessary.

Please note that the divider toggles the OC0 pins, so that two toggles are necessary for
one wave. The frequency therefore is half of the compare value (+1).

Page 31 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_super/dcf77_xosc_tn25/dcf77_xtaloscillator.ods

Xtal
(MHz)

77.5 + 32.768 = 110.268 kHz 77.5 32.768 = 44.732 kHz�

Divider
f is

(kHz)
Delta

%
Delta
(Hz)

Divider
f is

(kHz)
Delta

%
Delta
(Hz)

1.843200 8 115.200 4.47 4932.0 21 43.886 1.89 -846.3

2.000000 9 111.111 0.76 843.1 22 45.455 1.62 722.5

2.097152 10 104.858 4.91 -5410.4 23 45.590 1.92 858.3

2.457600 11 111.709 1.31 1441.1 27 45.511 1.74 779.1

2.500000 11 113.636 3.05 3368.4 28 44.643 0.20 -89.1

3.000000 14 107.143 2.83 -3125.1 34 44.118 1.37 -614.4

3.072000 14 109.714 0.50 -553.7 34 45.176 0.99 444.5

3.276800 15 109.227 0.94 -1041.3 37 44.281 1.01 -450.9

3.579545 16 111.861 1.44 1592.8 40 44.744 0.03 12.3

3.686400 17 108.424 1.67 -1844.5 41 44.956 0.50 224.1

3.686411 17 108.424 1.67 -1844.1 41 44.956 0.50 224.2

3.932160 18 109.227 0.94 -1041.3 44 44.684 0.11 -48.4

4.000000 18 111.111 0.76 843.1 45 44.444 0.64 -287.6

4.096000 19 107.789 2.25 -2478.5 46 44.522 0.47 -210.3

4.194304 19 110.376 0.10 108.4 47 44.620 0.25 -111.7

4.433619 20 110.840 0.52 572.5 50 44.336 0.88 -395.8

4.915200 22 111.709 1.31 1441.1 55 44.684 0.11 -48.4

5.000000 23 108.696 1.43 -1572.3 56 44.643 0.20 -89.1

5.068800 23 110.191 0.07 -76.7 57 44.463 0.60 -268.8

5.120000 23 111.304 0.94 1036.3 57 44.912 0.40 180.3

5.200000 24 108.333 1.75 -1934.7 58 44.828 0.21 95.6

6.000000 27 111.111 0.76 843.1 67 44.776 0.10 44.1

6.000000 27 111.111 0.76 843.1 67 44.776 0.10 44.1

6.144000 28 109.714 0.50 -553.7 69 44.522 0.47 -210.3

6.400000 29 110.345 0.07 76.8 72 44.444 0.64 -287.6

6.553600 30 109.227 0.94 -1041.3 73 44.888 0.35 155.7

7.372800 33 111.709 1.31 1441.1 82 44.956 0.50 224.1

8.000000 36 111.111 0.76 843.1 89 44.944 0.47 211.8

8.000000 36 111.111 0.76 843.1 89 44.944 0.47 211.8

8.867238 40 110.840 0.52 572.5 99 44.784 0.12 52.0

9.216000 42 109.714 0.50 -553.7 103 44.738 0.01 5.9

9.830400 45 109.227 0.94 -1041.3 110 44.684 0.11 -48.4

10.000000 45 111.111 0.76 843.1 112 44.643 0.20 -89.1

10.000000 45 111.111 0.76 843.1 112 44.643 0.20 -89.1

10.240000 46 111.304 0.94 1036.3 114 44.912 0.40 180.3

10.700000 49 109.184 0.98 -1084.3 120 44.583 0.33 -148.7

11.000000 50 110.000 0.24 -268.0 123 44.715 0.04 -16.6

11.059200 50 110.592 0.29 324.0 124 44.594 0.31 -138.5

12.000000 54 111.111 0.76 843.1 134 44.776 0.10 44.1

12.000000 54 111.111 0.76 843.1 134 44.776 0.10 44.1

12.288000 56 109.714 0.50 -553.7 137 44.847 0.26 114.7

12.750000 58 109.914 0.32 -354.2 143 44.580 0.34 -151.6

14.000000 63 111.111 0.76 843.1 156 44.872 0.31 139.8

14.318000 65 110.138 0.12 -129.5 160 44.744 0.03 11.7

14.745600 67 110.042 0.21 -226.2 165 44.684 0.11 -48.4

15.000000 68 110.294 0.02 26.1 168 44.643 0.20 -89.1

Page 32 of 112

Xtal
(MHz)

77.5 + 32.768 = 110.268 kHz 77.5 32.768 = 44.732 kHz�

Divider
f is

(kHz)
Delta

%
Delta
(Hz)

Divider
f is

(kHz)
Delta

%
Delta
(Hz)

16.000000 73 109.589 0.62 -679.0 179 44.693 0.09 -39.3

18.000000 82 109.756 0.46 -511.9 201 44.776 0.10 44.1

18.432000 84 109.714 0.50 -553.7 206 44.738 0.01 5.9

20.000000 91 109.890 0.34 -377.9 224 44.643 0.20 -89.1

When mixing the 77.5 kHz input signal with the higher frequency (+32.768 =
110.268 kHz) the 15 MHz xtal has the smallest deviation (0.02%, +26.1 Hz). The crystals
5.0688 and 6.4 MHz deviate by 0.07% or 77 Hz and the xtal 4.194304 MHz by 0.1% or
108 Hz. When mixing with the lower frequency (77.5 - 32.768 = 44.732 kHz) the
9.216 MHz- crystal fits best, with 0.01% or 5.9 Hz deviation.

When mixing with 44.732 kHz the first harmonic (89.46 Hz) is in the wider range of the
input frequency. Therefore interferences cannot be excluded, therefore the 15 MHz xtal
was chosen. This deviates by 26.1 Hz upwards.

4.2.2.3 Rectangles to sine waves

Any ATtiny has an 8-bit counter/timer with OC0A and OC0B output. The two pins can gen-
erate a symmetric output signal: OC0B generates the opposite signal by starting with a
high instead of a low port-bit. So, the oscillator signal can be fed symmetrically to the os-
cillator input of the TCA440.

On both outputs, OC0A and OC0B, rectangular signals are made. Using those rectangles
for mixing would have adverse consequences, as rectangles consist of all uneven harmon-
ics of the base frequency. It is better if those harmonics are filtered off by use of a three
stage RC network.

The calculation spreadsheet OpenOffice file here has a sheet named "Oscillator_coupling",
where I played with different RC combinations. To have a large-enough signal the filter
should not damp the base frequency too much, but the third (and beyond) harmonic.

To limit the number of components three RC filter stages have been combined. Finally I
selected a combination of 1kΩ and 1nF. The loss of amplitude is limited and the harmonics
are well suppressed with that.

This displays the filter effect of
the three stages, as calculated
with the spreadsheet.

The first stage (V(C1), blue
curve) still is nearly fully
reaching the operating voltage
limits. In the second stage
(V(C2), the red curve) the am-
plitude swing is smaller and
the form is nearer to a sine

Page 33 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr_calculations.ods

wave. In the third stage (V(C3), green curve) the amplitude loss is lower and the wave is
a nearly perfect sine.

Displayed above is
only one signal, the
second is reversed,
as can be seen in
this picture. This in-
cludes, in green and
on the right side
scale, the operating
supply currents
through the PWM
output pins during
these phases. These
are roughly 3.2 mA,
but reach slightly
above 8 mA in the peaks.

With that signal mixing can be made.

4.2.2.4 The schematic with a discrete crystal

The schematic is rather simple: the timer
outputs OC0A and OC0B generate the re-
versely clocked rectangle of 110.294 kHz, to
be filtered in three RC stages. The oscillator
inputs on pin 4 and 5 of the TCA440 receive
that signal.

The xtal of 15 MHz is connected to the XTAL
inputs, each with a capacitor of 18 pF to
GND.

Page 34 of 112

4.2.2.5 The schematic with an integrated xtal oscillator

This is the schematic using an integrated
crystal oscillator. That works at 5 V operating
voltage and does not have any other limita-
tions like above described. Even though this
type of xtal oscillators produce a horrible rec-
tangular signal (anything else than a steap
up and down), it works perfect with an AT-
tiny25.

These are the two sine waves of the two gen-
erated signals. Looks clean.

4.2.2.6 Software for the ATtiny25

The software for the ATtiny25 consists of a few lines assembler:

1. The two output pins OC0A and OC0B are configured as outputs.
2. The port register of OC0A is cleared, the one for OC0B is set to one (reversed sig-

nal)./li>
3. Both compare values are set to the divider factor (divider minus 1).
4. In the control port TCCR0A of timer TC0 the CTC mode is set and both output pins

are defined to toggle on compare match.
5. In control port TCCR0B the timer is started with a prescaler value of 1.
6. The sleep mode of the controller is set to idle mode, the SLEEP instruction is exe-

cuted and the controller is not needed any further.

The source code is listed here and can be downloaded in assembler format here.

;

Page 35 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_super/dcf77_xosc_tn25/dcf77_super_xtal_tn25_v1.asm

; *********************************
; * Xtal oscillator for TCA440 *
; * 15 MHz ==> (77.5+32.768 kHz) *
; * (C)2019 by DG4FAC *
; *********************************
;
.nolist
.include "tn25def.inc" ; Define device ATtiny25
.list
;
; **********************************
; H A R D W A R E
; **********************************
;
; Device: ATtiny25, Package: 8-pin-PDIP_SOIC
;
; _________
; 1 / |8
; RESET o--|RESET VCC|--o +5 V
; XTAL1 o--|PB3 PB2|--o
; XTAL2 o--|PB4 PB1|--o Osc out -
; 0 V o--|GND PB0|--o Osc out +
; 4|__________|5
;
; **********************************
; F I X E D C O N S T A N T S
; **********************************
;
.equ clock = 15000000 ; 15 MHz
.equ fosc = 77500+32768 ; Added
.equ divider = (clock+fosc)/(fosc*2)
.equ cCtc = divider - 1 ; CTC value
;
; **********************************
; R E G I S T E R S
; **********************************
;
.def rmp = R16 ; Multipurpose register
;
; **********************************
; M A I N P R O G R A M I N I T
; **********************************
;
.cseg
.org 000000
;
Main:
 sbi DDRB,DDB0 ; PB0 direction output
 cbi PORTB,PORTB0 ; Clear OC0A output
 sbi DDRB,DDB1 ; PB1 direction output
 sbi PORTB,PORTB1 ; Set OC0B output
 ldi rmp,cCtc ; Write CTC value
 out OCR0A,rmp ; to compare register A
 out OCR0B,rmp ; and B
 ldi rmp,(1<<WGM01)|(1<<COM0A0)|(1<<COM0B0) ; CTC mode, toggle OC0A
 out TCCR0A,rmp ; in TC0 control port A
 ldi rmp,(1<<CS00) ; Prescaler = 1
 out TCCR0B,rmp ; in TC0 control port B
 ldi rmp,1<<SE ; Sleep enable, idle mode
 out MCUCR,rmp
Loop:

Page 36 of 112

 sleep ; Go to sleep
 rjmp loop
;
; End of source code

4.2.2.7 Fuses of the ATtiny25

Prior to or after programming the flash the fuses of the ATtiny25 have to be set to work
with the external xtal or xtal oscillator. The following fuses have to be set with a discrete
crystal:

1. CLKDIV8 has to be disabled.
2. The clock frequency has to be set to an external oscillator of more than 8 MHz.

4.2.2.8 Mounting the xtal sine wave generator

This is the sine wave generator on
a breadboard, here with a discrete
crystal. The six capacitors right to
the ATtiny25 form the three RC
networks for sine wave filtering.

This is the version with the inte-
grated xtal oscillator.

Page 37 of 112

4.1.3 LC-VCO-Oscillator with ATtiny25 controller

The mixer frequency for the DCF77 superhet with a TCA440 has to work exactly at
77.5+32.768 = 110.268 kHz, with deviations of only a few Hz. To achieve this with an LC
oscillator, its frequency has to be measured exactly and, in case it differs by more than
+/-5 Hz, it has to be re-adjusted. This can be done with an ATtiny25.

4.1.3.1 Design of the LC-VCO-Oscillator

Firstly, building an LC oscillator is a
simple task: an appropriate coil L and
a convenient capacitor C has to be
brought to oscillate. This requires one
FET and generates a nice sine wave.

That is how such a simple LC oscillator
looks like. It works as follows.

Depending from the capacitive voltage
divider with the two capacitors from
gate to source and from source to ground the FET produces a nice sine wave on the drain.
On the source pin, the sine wave is rather distorted, and, if the divider ratio is changed a
little bit, also the drain sine wave is rather distorted. The FET goes into saturation and dis-
torts the clean sine wave. That comes from the large amplitude on the gate, which dis-
turbs the function of the varactor diodes.

This has the disadvantage that the frequency regulation with the varactor diodes does not
work good enough and is very far from predictable, even though those are reversed dou-
ble diodes.

Conclusion: impracticable for a reliable operation.

To achieve
an orderly
operation,
the ampli-
tude of the
LC circuit has
to be kept as
low as possi-
ble. In this
design, the
amplitude is
limited by
two Germa-
nium or
Schottky
diodes on the LC circuit, that limit the amplitude at +/-0.2 V. The FET does not amplify in
this design, an additional inverting amplifier follows to feedback enough HF to allow oscil-
lation for which the inversion is necessary.

Page 38 of 112

4.1.3.2 Frequency measurement and -regulation

To measure the frequency and to regulate the voltage of the varactor diodes for a constant
frequency of 110,268+/-5 Hz an ATtiny25 follows. The controller is clocked with an 8 MHz
crystal oscillator, the internal RC oscillator is not exact enough for that task.

The timer/counter TC0 in the ATtiny25 generates the measuring time clock: the pulses are
counted for exactly 0.5 seconds long. The 0.5 seconds are achieved by dividing the con-
troller clock of 8 MHz

1. by 256 in the prescaler, and
2. by 125 in the counter in CTC mode, and
3. by 125 in a register.

As the analog comparer is used to detect
pulses, each sine wave produces two ana-
log comparer changes, so the 24-bit wide
frequency counter registers directly hold
the frequency in Hz.

If this is by more than 5 Hz smaller, the
PWM value of the 8-bit counter TC1 in
OCR1B is increased by one. That increases
the PWM output voltage after the RC filter
by 5V/256 = 19.5 mV. This increasing
voltage decreases the capacity of the var-
actor diode by approximately 0.02 pF and
increases the LC frequency accordingly.

If the measured frequency exceeds 110,268 Hz by more than 5 Hz, the OC1B value is de-
creased by one, the smaller voltage on the varactor diodes increases their capacity and
lowers the frequency of the LC accordingly. By that the oscillator frequency is kept within
that narrow bandwidth.

To signal adjustments made and the correctness of the frequency two LEDs (or one double
LED red/green) are build in. The yellow LED signals that the frequency is too small, the
red signals exceeding frequency. If the oscillator works correct, both LEDs are switched
off. If you do not need that and your oscillator works correct, just remove the LED and its
current-limiting resistor.

This is the overall schematic of the frequency regulated oscillator.

Page 39 of 112

4.1.3.3 Programming the ATtiny25

The program for the ATtiny25 is written in Assembler. The source code can be downloaded
as assembler source text here and can be viewed in the next chapter.

The source code consists of the following functional parts:

1. Adjusting the hardware:
• initiating the stack for interrupt handling,
• initiating the LED output pin,
• starting the timer/counter TC1 as asynchronous PWM (with 100µs wait time

for PLL synchronization), with OC1B as output pin and with 255 in compare B
(+5 V on the output,),

• starting the timer/counter 0 as gate timer for frequency measurement, with
interrupt enable,

• starting the analog comparer for detecting edges on the input, with interrupt
enable, and

• enabling the interrupt flag in the status register.
2. The two interrupt routines

• for frequency measurement via analog comparer: an 8-bit register counts
the interrupts, on overflow an additional 16-bit counter is increased,

• for the gate time of the frequency measurement: a divider register, starting
with 125, is decreased, it it reaches zero

• the register divider is restartet with 125,
• the current 24-bit counter state is copied to three other registers, and
• the 24-bit counter registers are cleared.

3. The comparison with the lower and upper limit of the target frequency:
• Comparing the copied 24-bit counter with the smaller frequency limit: if the

measured frequency is smaller the PWM frequency is increased (if not al-
ready at 255) and the yellow LED is switched on by setting its data direction
bit and clearing the output bit,

• Comparing the copied 24-bit counter with the higher frequency limit: if the
frequency is larger than that, the PWM value is decreased (if not already
smaller than the lower limit) and the red LED is switched on by setting its di-
rection- and port-bit,

• if both cases are not true, the LED is switched off by clearing its direction bit.

For both interrupt service routines their duration has been added in clock cycles.

The analog comparer interrupt occurs every 4.5 µs, so after 9 µs one interrupt event
would be missing causing a difference of 1 Hz. That is the case if the TC0 interrupt is
longer than 72 clock cycles.

An interrupt loss of the TC0 gate timer can only occur after 512 clock cycles.

Both interrupt service routines are fast enough to not interfere with each others.

Page 40 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_super/dcf77_lcosc_tn25/dcf77_lcoscill_tn25_v1.asm

The whole program has
137 words and fits very well
into the flash memory of the
ATtiny25. Do no forget, prior to
or after programming the
flash, to change the oscillator
fuse of the ATtiny25, otherwise
it would work with only 1 MHz.

4.1.3.4 Connecting the LC
oscillator to the TCA440

The output of the LC oscillator
on the collector of the BC547 is
coupled to the TCA440's oscil-
lator input on pin 4 via a ca-
pacitor of 1 nF. The differential
input on pin 5 of the TCA440 is
deactivated with a 1 or 10 nF
capacitor to ground, therefore
the oscillator input is unsym-
metrical and is made symmet-
rical only by the emitter resis-
tor in the TCA440's oscillator
input stage.

4.1.3.5 The source code for the ATtiny25

This is the assembler source code for the LC-VCO's ATtiny25. The original source code in
assembler format is here.

;
; *********************************
; * LC Oscillator with frequency *
; * regulation via PWM&varicap *
; * (C)2019 avr-asm-tutorial.net *
; *********************************
;
.nolist
.include "tn25def.inc" ; Define device ATtiny25
.list
;
; **********************************
; D E B U G G I N G S W I T C H
; **********************************
;
.equ Yes = 1 ; Set debug on
.equ No = 0 ; Set debug off
;
; Do not compare, blink in 500 ms
.equ debug_blink500ms = No ; Yes = blink
;
; Blink on measuring on analog compare int
; Red and green LED blink very fast if comparer
; int occurs, counting is disabled
.equ debug_blinkaci = No ; Yes = blink
;
; **********************************

Page 41 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_super/dcf77_lcosc_tn25/dcf77_lcoscill_tn25_v1.asm

; H A R D W A R E
; **********************************
;
; Device: ATtiny25, Package: 8-pin-PDIP_SOIC
; _________
; 1 / |8
; RESET o--|RESET VCC|--o +5V
; Xtal osc o--|CLKI PB2|--o SCK/LED
; PWM out o--|OC1B PB1|--o MISO/AIN1
; 0V o--|GND PB0|--o MOSI/AIN0
; 4 |__________|5
;
; **********************************
; P O R T S A N D P I N S
; **********************************
;
.equ pPwmD = PORTB ; PWM direction port
.equ bPwmD = DDB4 ; PWM direction port pin
.equ pLedO = PORTB ; LED output port
.equ pLedD = DDRB ; LED direction port
.equ bLedO = PORTB2 ; LED output port pin
.equ bLedD = DDB2 ; LED direction port pin
.equ pLedI = PINB ; LED blinking port
.equ bLedI = PINB2 ; LED blinking port pin
;
; **********************************
; A D J U S T A B L E C O N S T
; **********************************
;
; Clock rate of external crystal oscillator
.equ clock=8000000 ; Define clock frequency
.equ cOscFreq = 77500 + 32768 ; Frequency of the LC oscillator, Hz
.equ cOscTol = 5 ; Frequency tolerance +/-, Hz
.equ cMinVolt = 2000 ; Minimum voltage of PWM, mV
;
; Use sheet clock in dcf77_lcosc_tn25.ods for the following
.equ cGateTime = 500 ; Gate time for frequency measurement in ms
.equ cPresc = 256 ; Prescaler (from spreadsheet)
.equ cCtcDiv = 125 ; CtcDivider (from spreadsheet)
;
; **********************************
; F I X & D E R I V. C O N S T
; **********************************
;
; Check clock
.set cClockCorrect = clock==4000000
.set cClockCorrect = cClockCorrect || (clock==4194304)
.set cClockCorrect = cClockCorrect || (clock==4915200)
.set cClockCorrect = cClockCorrect || (clock==5120000)
.set cClockCorrect = cClockCorrect || (clock==6553600)
.set cClockCorrect = cClockCorrect || (clock==7372800)
.set cClockCorrect = cClockCorrect || (clock==8000000)
.set cClockCorrect = cClockCorrect || (clock==16000000)
.if cClockCorrect
 .message "Clock is correct"
 .else
 .error "Incorrect clock setting!"
 .endif
;
; Define frequency measurement constants
.equ cTc0Clk = clock / cPresc ; Define prescaler from clock
.equ cDiv = cTc0Clk / cCtcDiv / 2 ; Register divider
.if cDiv > 256
 .error "cDiv is too large!"
 .endif
.if cCtcDiv == 256
 .equ cCtcCmp = 0
 .else

Page 42 of 112

 .equ cCtcCmp = cCtcDiv-1
 .endif
.equ cDelta = cDiv*(cCtcCmp+1)*cPresc ; Clock calculated
.if cDelta != clock
 .message "Clock divider has division rest, inaccurate second"
 .endif
.equ cMeasFreq = 1000 / cGateTime ; Measuring frequency
.if cMeasFreq < 1
 .error "Measuring gate time too long"
 .endif
;
; Oscillator constants
.equ cOscLow = cOscFreq - cOscTol ; Smallest tolerable frequency
.equ cOscMax = 2*cOscTol + 1 ; Largest tolerable frequency
;
; Minimum voltage of PWM
.equ cMinPwm = (cMinVolt * 256) / 5000 ; Minimum PWM value
;
; **********************************
; R E G I S T E R S
; **********************************
;
; free: R0 to R14
.def rSreg = R15 ; Save/Restore status port
.def rmp = R16 ; Define multipurpose register
; free: R17 to R29
.def rFlag = R17 ; Flag register
 .equ bOver = 0 ; Measuring cycle is over flag
; free: R18
.def rDiv = R19 ; Register divider
.def rFrq0 = R20 ; Measured frequency result, byte 1
.def rFrq1 = R21 ; dto., byte 2
.def rFrq2 = R22 ; dto., byte 3
.def rCnt0 = R23 ; LSB of 24 bit counter
.def rCnt1 = R24 ; HSB, used as 16 bit counter
.def rCnt2 = R25 ; MSB of 16 bit counter
; free: R26 to R31
;
; **********************************
; S R A M
; **********************************
;
; No SRAM used
;
; **********************************
; C O D E
; **********************************
;
.cseg
.org 000000
;
; **********************************
; R E S E T & I N T - V E C T O R S
; **********************************
 rjmp Main ; Reset vector
 reti ; INT0
 reti ; PCI0
 reti ; OC1A
 reti ; OVF1
 reti ; OVF0
 reti ; ERDY
 rjmp AciIsr ; ACI
 reti ; ADCC
 reti ; OC1B
 rjmp Oc0AIsr ; OC0A
 reti ; OC0B
 reti ; WDT
 reti ; USI_START

Page 43 of 112

 reti ; USI_OVF
;
; **********************************
; I N T - S E R V I C E R O U T .
; **********************************
;
; Counts changes of the analog comparer
; Occurs every 4.5344 us at 110.268 kHz
AciIsr: ; 7 clocks for int and vector jump
 .if debug_blinkaci == Yes
 sbi pLedI,bLedI ; Blink LED
 reti
 .endif
 in rSreg,SREG ; Save SREG, +1 = 8
 inc rCnt0 ; Count LSB, +1 = 9
 brne AciIsr1 ; +1/2 = 10/11
 adiw rCnt1,1 ; Count HSB/MSB, +2 = 12
AciIsr1: ; 11/12 clocks
 out SREG,rSreg ; Restore SREG, +1 = 12/13
 reti ; +4 = 16/17
; Maximum 17 clock cycles
; 17 clock cycles in 4.5344 us = 4 MHz min.
;
; 2 Hz counter interrupt service routine
; counts for 0.5 seconds and reads
; counting result
Oc0AIsr: ; 7 clocks for int and vector jump
 in rSreg,SREG ; Save SREG, +1 = 8
 dec rDiv ; Decrease divider, +1 = 9
 brne Oc0AIsr1 ; Not yet zero, +1/2 = 10/11
 sbr rFlag,1<<bOver ; Set bOver flag, +1 = 11
 ldi rDiv,cDiv ; Restart cDiv, +1 = 12
 mov rFrq0,rCnt0 ; Copy counter, +1 = 13
 mov rFrq1,rCnt1 ; +1 = 14
 mov rFrq2,rCnt2 ; +1 = 15
 clr rCnt0 ; Clear counter, +1 = 16
 clr rCnt1 ; +1 = 17
 clr rCnt2 ; +1 = 18
Oc0AIsr1: ; 11/18 clock cycles
 out SREG,rSreg ; Restore SREG, +1 = 12/19
 reti ; +4 = 16/23
;
; **********************************
; M A I N P R O G R A M I N I T
; **********************************
;
Main:
 ldi rmp,Low(RAMEND)
 out SPL,rmp ; Init LSB stack pointer
 ; Init I/O ports
 sbi pLedD,bLedD ; Turn LED output on
 sbi pLedO,bLedO ; Turn red LED on
 ; Start TC1 as async PWM
 sbi pPwmD,bPwmD ; Set OC1B as output
 ldi rmp,255 ; Start with the highest PWM stage
 out OCR1B,rmp ; in compare port B
 ldi rmp,255 ; End value for PWM, 8-Bit PWM
 out OCR1C,rmp ; in output compare register C
 ldi rmp,(1<<PLLE)|(1<<LSM) ; Enable PLL in low speed mode
 out PLLCSR,rmp ; in PLL control register
 ; Wait for 100 microseconds
 ; n = 2+4*(z16-1) + 3
 ; n = 2+4*z16-4+3 = 4*z+1
 ; 4*z16 = n-1
 ; z16 = (n-1)/4
 ; n @ 8MHz = 800
 .equ z16 = (clock/10000+2)/4
 ldi rCnt2,High(z16) ; Wait for 100 us, MSB

Page 44 of 112

 ldi rCnt1,Low(z16) ; dto., LSB
PllWait:
 sbiw rCnt1,1 ; Count down
 brne PllWait ; Wait further
 ldi rmp,(1<<PLLE)|(1<<LSM)|(1<<PCKE) ; and PCK
 out PLLCSR,rmp ; in PLL control register
 ldi rmp,(1<<PWM1B)|(1<<COM1B1) ; PWM B enabled, High to low
 out GTCCR,rmp ; in general timer control register
 ldi rmp,(1<<PWM1A)|(1<<CS12) ; PWM A, High/Low, Prescaler=8
 out TCCR1,rmp ; in TC1 control register
 ; Start TC0 as gate timer
 ldi rDiv,cDiv ; Start software divider
 ldi rmp,cCtcCmp ; Set compare A value
 out OCR0A,rmp ; in compare A
 ldi rmp,1<<WGM01 ; Set CTC mode 3
 out TCCR0A,rmp ; in TC0 control port
 clr rmp
 .if (cPresc == 1) || (cPresc == 64) || (cPresc == 1024)
 sbr rmp,1<<CS00
 .endif
 .if (cPresc == 8) || (cPresc == 64)
 sbr rmp,1<<CS01
 .endif
 .if (cPresc == 256) || (cPresc == 1024)
 sbr rmp,1<<CS02
 .endif
 out TCCR0B,rmp ; to TC0 control port B
 ldi rmp,1<<OCIE0A ; Enable interrupt on compare A
 out TIMSK,rmp ; in timer int mask
; Sleep mode idle
 ldi rmp,1<<SE ; Sleep enable
 out MCUCR,rmp ; in microcontroller control port
 ; Init analog comparer as frequency input
 ldi rmp,(1<<AIN1D)|(1<<AIN0D) ; Disable digital inputs
 out DIDR0,rmp ; in analog disable port register
 ldi rmp,1<<ACIE ; Enable analog comparator interrupts
 out ACSR,rmp ; in analog comparer status register
;
; Enable interrupts
 sei ; Enable interrupts
;
; **********************************
; P R O G R A M L O O P
; **********************************
;
Loop:
 sleep ; Go to sleep
 nop ; Delay on wake-up
 sbrc rFlag,bOver ; bOver flag clear?
 rcall Measured ; Frequency measurement
 rjmp Loop
;
; Frequency measurement complete
Measured:
 cbr rFlag,1<<bOver ; Clear flag
.if debug_blink500ms == Yes
 sbi pLedI,bLedI
 ret
 .endif
 ldi rmp,Byte1(cOscFreq) ; Byte 1 of cOscLow
 sub rFrq0,rmp ; Subtract measured frequency, LSB
 ldi rmp,Byte2(cOscFreq) ; Byte 2 of cOscLow
 sbc rFrq1,rmp ; dto., HSB
 ldi rmp,Byte3(cOscFreq) ; Byte 3 of cOscLow
 sbc rFrq2,rmp ; dto., MSB
 brcs MeasuredLow ; Frequency too small, increase
 ldi rmp,Byte1(cOscMax) ; Byte 1 of upper bound
 sub rFrq0,rmp ; Subtract upper bound, LSB

Page 45 of 112

 ldi rmp,Byte2(cOscMax) ; Byte 2 of upper bound
 sbc rFrq1,rmp ; Subtract upper bound, HSB
 ldi rmp,Byte3(cOscMax) ; Byte 3 of upper bound
 sbc rFrq2,rmp ; Subtract upper bound, MSB
 brcc MeasuredHigh ; Frequency too high, decrease
 cbi pLedD,bLedD ; LED off
 ret
MeasuredLow:
 ; Measured frequency too low, increase
 in rmp,OCR1B ; Read compare value
 inc rmp ; Increase compare value
 brne MeasuredSetPwm ; Not the max. value, set PWM
 dec rmp ; Decrease again
 cbi pLedO,bLedO ; LED to yellow
 rjmp MeasuredSetPwm
MeasuredHigh:
 ; Measured frequency too high, decrease
 in rmp,OCR1B ; Read compare value
 dec rmp ; Decrease
 cpi rmp,cMinPwm ; Smaller than minimum PWM
 brcc MeasuredSetPwm ; Not smaller than min., set PWM
 inc rmp ; Increase again
 sbi pLedO,bLedO ; LED to red
MeasuredSetPwm:
 out OCR1B,rmp ; Write new value to TC1 compare B
 sbi pLedD,bLedD ; LED pin as output
 ret
;
; End of source code
;
Copyright:
.db "(C)2019 by Gerhard Schmidt",0,0
.db "C(2)10 9ybG reahdrS hcimtd",0,0

4.2.4 Mounting the superhet

That is how the capacitor and xtal grave looks alike on a breadboard, here with a LC oscil-
lator.

To the left the buffer stage with the FET can
be seen (the antenna can not be seen). The
frequency of the input stage can be ad-
justed with the left trim resistor. Then the
TCA440 with the oscillator coils follow.
Above to the right the three tiny crystals
and the 1µF grave can be seen. On the
lower part the three 470 µF capacitors of
the rectifier can be seen. The trim resistor
to the right regulates the gain of the IF am-
plifier.

4.3 The xtal filter for 32.768 kHz
To measure the filter properties of
32.768kHz crystals, one can use this
oscillator. It generates a 32kHz sine
wave signal with an adjustable fre-
quency. The adjustment is made

Page 46 of 112

with Medium Wave varactor diodes, for which a BB212 or a variable capacitor for medium
wave can also be used.

The crystal is fed with the low-resistance signal output of the sine wave generator and has
an output resistor of 1kΩ.

This is the resulting pass-band curve. It is less than 10 Hz wide, especially the falling edge
is rather steep.

When measuring slightly above the resonance frequency a moderate feedback on the os-
cillator took over
control, so one sin-
gle data point
showed an unex-
pected value.

Remarkable is that
the selectivity far
from the resonance
is rather limited.
This is caused by the
stray capacity of the
crystal. Therefore
the crystal filter shall
always be combined
with an LC filter, to
reduce frequencies far from the xtal resonance.

4.4 Automatic control of the DCF77 signals
The gain control as well as the frequency adjustment can, for test purposes, be adjusted
with resistor trimmers. A usual trim potentiometer with 270° is sufficient.

More comfortable is when a micro-controller does that work. Measuring, adjusting and
control of the AGC and AFC can be done with an ATtiny45, as shown here in detail.

Page 47 of 112

Path: Home => AVR overview => Applications => DCF77 receivers => DCF controller

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

DCF77 controller
with ATtiny45

5 DCF77 controller with ATtiny45
To ensure that the DCF77 clock owner does not have to adjust its frequency and gain
steadily and with a trim resistor, and to ensure that the DCF77 information does not have
to be decoded by counting and assembling single bits, a small controller has been devel-
oped that does all that: taking care for the receiver and decode the DCF77 bits.

The results of that control are

1. two PWM signals:
1. a gain control signal, ranging from 0 to 255, where larger numbers decrease

the gain of the receiver, so that enough, but not too large DC from the AM
rectifier results,

2. a frequency control signal, ranging from 0 to 255, which increases the varac-
tor diode's capacity with increasing values and frequently tries out, if an in-
creased or decreased voltage increases the drop difference of the rectified
DCF77 signal, by that keeping the input frequency of the ferrite antenna al-
ways on the center of DCF77's transmit frequency,

2. the checking that amplitude drop and pause times of the DCF77 signal are within
the correct expected times of 100 or 200 ms (for a zero or one bit received), of 800
resp. 900 (for an inactive pause with high amplitude following reception of a one or
zero bit) or of a high amplitude for either 1800 or 1900 milliseconds (minute
change following reception of the 59th or last one or zero bit), times plus and mi-
nus a selectable tolerance percentage,

3. to collect DCF77 bits, if the 100 or 200 ms long amplitude drops occur, and to store
those 59 bits per minute in a correct row in the SRAM,

4. on a minute change correctly received: to check all parity bits of DCF77 (minutes,
hours, date) for correctness,

5. to convert the received bits for minutes, hours, weekday, day, month and year from
BCD to binary format, and to

6. send all those information, including error messages and status information, over a
one-way two-wire interface to another controller, that can receive and display all
that on an LCD.

5.1 Why assembler? Why an ATtiny45 and nothing else?
Lots of things to do for

• an 8-bit-8-pin ATtiny45 controller with max. 2,048 instruction memory words and
256 bytes of SRAM storage space,

Page 48 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

• but manageable tasks if you do all that in assembler and not in one of the memory-
space eating, time-wasting and completely inadequate library-focused styles of
high-level-languages such as C or Bascom,

• a controller, but using the wonderful instruction set that the two Norwegians have
designed reduces CPU instruction steps from three or four, as necessary in less
well-designed PIC assembler, down to one, speeding up execution and to work with
the default 1 MHz clock rate,

• such a small and slow controller, speeded up by the use of fast interrupts to ensure
that all different hardware tasks are executed timely and exactly then when
needed, without wasting any time for unnecessary wait loops,

• the six pins I/O:
• two to switch a PWM output on and off very fast (a very special and exclusive

feature of the ATtiny25/45/85, with their very fast internal 64/32 MHz PWM
oscillator, allowing to use small capacitors to generate low-humming as well
as very fast-responding PWM signals, do not try this with another ATtiny or a
PIC as it does not work with such high speed,

• another two pins for the one-way serial communication with the other con-
troller, allowing a lean and fast sending baud-rate, just enough to fit into the
overall time schedule and to allow the receiver to collect those bits in an in-
terrupt-driven scheme,

• one pin to measure the amplitude DC, coming from the receiver's rectifier
stage, by use of the internal AD converter, with conversion initiated in con-
stant time intervals to ensure that the measuring rate fits well with the am-
plitude changes of DCF77,

• the RESET pin, that allows In-System-Programming of the ATtiny45 during
the software design stage, without having to remove the chip.

The additional controller to display those signals on an LCD was necessary to have all the
pro's of the ATtiny45 PWM features and to allow the use of other controllers for the display
or if you need any further DCF77-date-and-time-dependent switching only. If you need
only two or three channels to be switched on and off only during weekdays you can use an
ATtiny13 instead: connect serial clock with INT0, serial data with any other pin and the
two or three output pins with your switches. The DCF77 controller says which weekday
currently is and which time and date. Even if DCF77 is off: the status messages allow to
detect such failures and to switch to a software-driven clock scheme instead.

5.2 The schematic of the
ATtiny45 controller for DCF77
This is all you need. It works with an ATtiny45
or ATtiny85.

The two PWM outputs OC1A and OC1B gener-
ate the two voltages for AGC and AFC and use
the high-speed-PWM features of the
ATtiny45/85. The High-Speed PWM oscillator of
64 MHz is switched by software to low speed
(32 MHz is sufficient), then divided by 8 in the
prescaler, to yield a PWM frequency of

Page 49 of 112

31.25 kHz. Both outputs are connected to a two-stage RC network of 10kΩ and 1µF. This
ensures that digital humming is small enough and that the analog voltages produced react
fast enough to any changes of the PWM value.

The rectified and RC filtered (0.01 ms) AM DC signal from the DCF77 receiver is fed to the
AD converter channel ADC3. Conversion is clocked by TC0's timer overflow, that occurs
every 16.4 ms. The amplitude drop of 100 ms length for a transmitted zero results in six,
for a one in approximately twelve measurements. A zero and a one, followed by a minute
change pause of approximately 1,800 ms, happen within three seconds or over 183 mea-
surements. The storage of such measurement results, in order to calculate averages and
to measure pulse durations, requires 183 SRAM bytes. That is why the ATtiny25 does not
fit.

The whole time and date detection of the DCF77 signal as well as the AGC and AFC control
is based on this collection. No further RC filters are necessary (like this wou?d be the case
to detect the minute change in the DCF77 signal, see the chapter on how-it-works below).

Serial output of the results is done with the pins PB0 (data master, SDM) and PB2 (clock
master, SCM). As communication in backwards direction is unnecessary, both outputs are
always master and active. The two LEDs can be used to view active signal traffic.

The ISP interface can be used to program the chip within. It is not necessary if pre-pro-
grammed ATtiny45/85 are used.

5.3 Functioning

5.3.1 Start-up phase

When the controller starts, it absolves a start-up phase. This adjusts the AGC and the AFC
to start-up values. Both start with decimal 255 in their PWM channels or +5V. On every
complete batch of 155 measurements the AGC value is decreased by eight (maximum 32
batches or 81 seconds). The decrease stops if either

1. a minimum of 0.5 V has been reached, or
2. a maximum of 2.5 V has been exceeded, or
3. zero has been reached.

In any case the first approach of AGC adjustment is over then, further adjustment is taken
over by each completed batch by

1. increasing the PWM value, if the maximum is larger than 2.5 V, or
2. decreasing the PWM value, if the maximum is smaller than 2.0 V.

In the second phase the AGC value is adjusted. After each batch the AGC PWM is de-
creased and the difference between maximum and minimum is stored in SRAM. This
phase is stopped when the AFC PWM value reaches zero (which takes another 81 sec-
onds).

Software then searches for the first maximum value in the stored values, starting from the
difference at the PWM value of 255. This is done because, in case of a larger ferrite coil, a
second maximum can occur that relates to one of the two coils, which can be even
stronger than the combined one, but signal strength at that decreases very fast if the di-

Page 50 of 112

rection of the ferrite changes slightly. If the first maximum is identified, the AFC PWM is
written to that value.

Further frequency adjustment is then done on each batch completion: the AFC PWM value
is increased, and then decreased, and the difference of the maximum and minimum de-
cides, whether the last change is repeated (if the difference is larger) or if the direction
changes (if the difference is smaller). If the maximum has not been found during the AFC
scan period, the frequency scan is repeated over and over again.

5.3.2 Detection of zero/one bits and minute change

During the AGC and AFC scan periods normal checking of incoming single values is omit-
ted. Only if both the bGScan and bFScan flags are set, the single values are checked
whether a level change has happened. To do that, the last three measurements, as stored
in three registers and updated whenever a new measurement is completed, are compared
with the average value. The average value is updated whenever a complete batch has
been measured, it is the maximum value minus the minimum value.

If the last values were inactive (higher than average) it is waited for three succeeding val-
ues below average. If those are detected

• the detection direction bit is changed to increasing values,
• the length, over which the inactive high period lasted, is calculated, if this

• is below the minimum period of a zero, or
• in between the maximum period of a zero and the minimum period of a one,

or
• in between the maximum period of a one and the minimum period of a

pause, or
• in between the maximum period of a pause and the minimum period of a

minute change, or
• beyond the maximum period of a minute change

an error condition has occurred and is reported with an E code via the serial inter-
face.

• if the duration is in between the minimum for a minute change and its maximum, it
is checked whether exactly 59 bits have been received. If that is the case, the com-
plete set of DCF77 bits is converted (see below), otherwise an error is send.

If the previously recognized stage was a signal coming in (three values were below aver-
age) the last three values are checked for a signal end. If all three are above average the
detection of high-to-low signals is switched on. The signal duration of the low-signal is
checked for the minimum length of a zero and its maximum as well as for a one with its
minimum and maximum. If a correct zero or one has been identified, the respective bit is
shifted into the bit storage and counted. If not, respective error messages are send via the
serial interface.

5.3.3 Generation and properties of the PWM signals

The two outputs OC1A and OC1B generate PWM signals for adjusting gain and frequency.
8-bit timer TC1 is in asynch mode: the PWM clock is at 64 MHz, slowed down by two and
is divided by 8. The PWM width is 256 stages, so the resulting PWM frequency is 64 MHz /
2 / 8 / 256 = 15.625 kHz or a PWM period of 64 µs.

Page 51 of 112

To filter the harmonics, a double RC filter with 10kΩ and 1µF follow. The filter was simu-
lated with the Libre-Office spreadsheet here. On start-up, when both capacitors are un-
loaded and the PWM is set to 255, the following voltage increase happens.

The increas-
ing curve
shows that
the RC filter
has nearly
complete the
end point af-
ter 0.1 sec-
onds and
completely
after 0.2 s.
That is fast
enough to
not having to
wait on
start-up for
the stabilized voltage. The second capacitor follows slightly behind, but is also fast
enough.

The change speed from full load down to zero (not exactly zero, as the PWM has a mini-
mum of 1, which corresponds to a minimum of 19.5 mV), is similar. The end value is
reached within 0.2 s.

To demonstrate the speed of change for a small difference in PWM values, this shows the
voltages on
both capacitors
if the PWM is
switched from
255 down to
254 (normal
switching is by
one unit,
19.5 mV). The
first capacitor
shows voltage
drops (hum-
ming) of 3 to
4 mV by the
single low
phase among
255 high
phases, the second capacitor is completely free of this humming.

The voltage on C2 is a bit delayed, but by less than 5 ms. That is fast enough for the AFC
and AGC adjustment, the next ADC measurement after 16.384 ms will already reflect the
new voltage setting.

Page 52 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_controller_tn45/dcf77_decoder_pwm.ods

Do not try this with a different type of ATtiny or a different controller, it does not work due
to lower PWM frequencies.

5.3.4 Measuring and evaluation of the AM DC signals

To ensure that measuring the amplitude voltage in constant time slices the AD conversion
is started by the overflow of timer TC0 using the ADATE bit of the ADC. The TC0 prescaler
is set to 64, so that the conversion starts all 256 * 64 * 1,000 / 1,000,000 = 16.384 ms.
The conversion, with an ADC clock prescaler of 128, needs 1.664 ms (see section Timing
in the source code).

Reading of the ADC values is performed within the ADC's interrupt service routine:

1. only the upper 8 bits of the result are read (ADLAR is activated),
2. the value read is written to the registers rLast, so that the last three measurements

are available in the registers rLast1 to rLast3, because the amplitude drop detection
is based on those three values (outside the ISR),

3. the value is written to an SRAM buffer sBuffer, that is adjusted to a length of 155
measurements, corresponding to the last 155 * 16.384 ms = 2.54 seconds.

If the buffer is full, the flag bBufFull in the flag register rFlag is set. Outside the interrupt
service routine this bit is recognized and the complete buffer is searched for the maximum
and minimum values. The difference between the two extremes is then

1. evaluated if the minimum difference in cAmVoltDelta has been reached. If this is
not the case, error message E0 (DCF77 signal time-out) is issued over the serial in-
terface, further bit evaluation is blocked by setting the bMin flag in the flag register
and a frequency scan is re-started by clearing the bFScan flag,

2. divided by two and added to the minimum value. This value is used as compare
value to decide whether the signal strength is above or below the average value.

The maximum, average and difference values are applied until the next buffer is filled (af-
ter 2.54 seconds). From the measured difference value the AGC adjustment is derived on
every buffer-full event:

1. The PWM value is either increased or decreased in the next period, depending from
the result of the last increase or decrease.

2. If the last change was an increase:
• it is checked whether the difference between max and min has increased in

that period, if that is the case, the next higher value is written to the PWM
compare register,

Page 53 of 112

• if that is not the case and the difference is smaller or equal the change direc-
tion is reversed to decrease and the next lower PWM value is written to the
PWM compare register.

3. If the last change was a decrease the opposite is performed.

That means, that in case that the difference is equal, the direction is changing each time
the buffer is full, and that the PWM value constantly goes up and down by one unit.

The AGC PWM is adjusted as follows:

1. if the maximum value is smaller than 2.0 V, the gain is increased by decreasing the
PWM compare value by 1,

2. if the maximum value is larger than 2.5 V, the gain is decreased by increasing the
PWM compare value by 1,

3. if the maximum is in between 2.0 and 2.5 V, the PWM value is not changed.

If neither bGScan nor bFScan are cleared, the edge detection is active. Edge detection
works as follows:

1. The flag bHi in the flag register stores if the last edge was a low-to-high transition,
the register rTransH:rTransL holds the SRAM buffer position when the last transi-
tion happened.

2. If bHi is set, an amplitude drop is to be detected. It is checked whether the last
three values in rLast1, rLast2 and rLast3 are all below the average value. If that
is not the case the detection routine ends and waits for the next value. If it is the
case,

• the flag bHi is cleared,
• the difference between the current and the last transition in the buffer is cal-

culated and evaluated whether the duration of the high-state was, within the
tolerances, a correct pause between the last zero or one bit and the start of
the next bit or a correct minute change. In the latter case the DCF77 bits are
checked whether 59 were received and the DCF77 time and date are
checked, converted and issued.

• the current position in the sBuffer is written to rTransH:rTransL.
3. If bHi is clear, the next rising edge is to be detected. This is the case if all rLast

registers are above average. If this is the case,
• the flag bHi is set,
• the duration of the low signal is calculated by comparing the current sBuffer

position with the start position in rTransH:rTransL. If this is within the tol-
erance area of a zero or a one, the respective bit is shifted into the DCF77
bits received and counted. If not, respective error codes are transmitted over
the serial connection,

• rTransH:rTransL is updated.

5.3.5 Serial transmission

The serial transmit routine is called whenever the ADC reports a single measurement re-
sult (any 16.384 ms) and after all actions to be taken are completed. The messages to be
send are written into a ring buffer in SRAM, with two bytes for each message. The buffer
input and output addresses are held in two register pairs. On calling the send routine it is

Page 54 of 112

checked whether input and output addresses are equal. If that is the case, nothing is
send.

If there are messages to be send,

1. the message is copied (2 bytes),
2. it is send bit-by-bit (starting with bit 15 down to 0) over the serial pins by

• placing the bit onto the serial data output pin,
• waiting for a certain delay time for settlement,
• setting the serial clock output pin high for a certain time, then clear again,

and for all 16 bits,
3. increasing the message output address by two.

The receiver has to
be able to receive
each bit within
50 µs (at 10 kBd)
resp. 25 µs (at
20 kBd). A PCINT in
the receiver, with
shifting the bits and
counting, takes
27 clock cycles, so
the receiver has to work with at least a clock rate of 540 kHz at 10 kBd or 1.08 MHz at
20 kBd. So the default is set to 10 kBd to be compatible with a 1 MHz clock rate of the re-
ceiver.

If necessary, any 16.384 ms a data set transmit requires 800 or 1,600 µs time. For flag
handling and all other operations nearly the complete time between this and the next ADC
event is available (16.3 milliseconds), because the AD conversion does not need any ac-
tion. Transmit baud-rates of 10 or 20 kBd are compatible, the lowest possible baud-rate
would be roughly 8 ms for 16 Bits = 2 kBd.

Lots of different information have to be send to the receiver. To ease processing of those
in the receiver, the 16 bits were divided into the MSB, consisting of an ASCII character,
and a second LSB that holds an additional parameter. All message codes are listed in the
table, in "" enclosed characters are ASCII, in () enclosed values are binary numbers.

Parameter High Byte Low Byte Duration (ms)

Statusmeldungen

16.4

Restart "R" 0

Frequency scan completed "C" 0=not ok, 1=ok

Signal strength "S" (AGC value)

Frequency "F" (AFC value)

Received DCF77 time 98.3

Minutes "m" (Minutes)

Hours "h" (Hours)

Weekday "W" (Weekday)

Day "D" (Day)

Month "M" (Monath)

Page 55 of 112

Parameter High Byte Low Byte Duration (ms)

Year "Y" (Year)

Bit monitoring

16.4Zero received "0" 0

One received "1" 1

DCF77 error messages

16.4

Time-out "E" "0"

Short signal "E" "1"

Between zero/one "E" "2"

Between one/pause "E" "3"

Between pause/minute "E" "4"

Longer than minute "E" "5"

<>59 bits "E" "6"

Number of bits "B" (Number of received bits)

Parity minutes odd "E" "7"

Minute ones > 9 "E" "8"

Minutes > 59 "E" "9"

Parity hours odd "E" "A"

Hours ones > 9 "E" "B"

Hours > 23 "E" "C"

Parity date odd "E" "D"

Weekday = 0 "E" "E"

Day = 0 "E" "F"

Day ones > 9 "E" "G"

Day > 31 "E" "H"

Month = 0 "E" "I"

Month ones > 9 "E" "J"

Month > 12 "E" "K"

Year ones > 9 "E" "L"

Year > 99 "E" "M"

Debugging messages

32.8Buffer filled "a" (Average value)

Delta max - min "d" (Difference)

All transmitted time and data of a successfully evaluated DCF77 signal set require approxi-
mately 100 ms. This can be used to adjust the seconds counter of the receiver clock to
synchronize the start of the next minute.

The debugging messages are only send if the respective debugging switches are set to
Yes.

The signals that the transmitter produces look like shown here (left: 10 kBd, right:
20 kBd). Send here was 0xAAAA (ones and zeroes). The data signal on PB0 (SDM) is red,
the clock signal on PB2 (SCM) is green.

Page 56 of 112

5.4 Software
$$

Page 57 of 112

5.5 Operation experiences
$$

©2019 by http://www.avr-asm-tutorial.net

Page 58 of 112

http://www.avr-asm-tutorial.net/

Path: Home => AVR overview => Applications => DCF77 receivers => DCF display

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

DCF77 display
with ATtiny24

6 DCF77 display with an ATtiny24

This device

1. receives the serial
signals from an
ATtiny45 decoder and
displays those on an
LCD,

2. is working with the
ATtiny24
experimental device
with LCD and can be
attached using a sim-
ple six pin plug,

3. uses the LCD include
software as shown
here to drive the
LCD, and

4. has an additional sec-
onds counter and display that simply counts from 0 to 59.

The device can be used as a complete display for all DCF77 receivers as described on that
webpage, providing time and date from the receiver as well as status and error messages.

The displayed device works a little bit different: the ATtiny24 is mounted, together with
the ATtiny25 controller, on one PCB. Wiring is slightly different, but not very much.

6.1 Connecting the device with the receiver
With a six pin flat cable, both sides equipped with a plug, connect

1. pin 1 with GND (minus operating voltage),
2. pin 2 with +5 V operating voltage,
3. pin 3 with the serial clock pin of the ATtiny45 controller (SCM), and
4. pin 6 with the serial data pin of the ATtiny45 (SDM).

Page 59 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/lcd/lcd.html
http://www.avr-asm-tutorial.net/avr_en/apps/tn24_lcd/tn24_lcd.html
http://www.avr-asm-tutorial.net/avr_en/apps/tn24_lcd/tn24_lcd.html
http://www.avr-asm-tutorial.net/avr_en/apps/tn24_lcd/tn24_lcd.html
http://www.avr-asm-tutorial.net/avr_en/apps/tn24_lcd/tn24_lcd.html
http://www.avr-asm-tutorial.net/avr_en/apps/tn24_lcd/tn24_lcd.html
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

See the schematic of the Tiny24-LCD experimental display device here. All you need to do
is programming the ATtiny24's flash memory with the software provided here.

6.2 Display
When starting and with-
out any serial input sig-
nals the program starts
like this.

In line 2 behind Raw
data: the incoming raw
data is displayed. The first
character (MSB in rRxH)
is simple ASCII, then
rRxL follows in hexadecimal format. If the displayed first character is an F: then the PWM
value of the frequency adjustment follows as a three-digit decimal.

The incoming DCF77 data for the time (hours and minutes) follow in line 3. The seconds
display is internally generated and counts even without DCF77 signal. Behind the ASCII
character S: the PWM value of the gain adjustment follows in 3-digit decimal format.

Line 4 displays the weekday and the date, with format depending from the language cho-
sen, and any signal errors behind E:.

The display changes when the ATtiny45's SCM and SDM are connected.

6.3 Software for the ATtiny24
The software can be downloaded as assembler source code from here or can be displayed
in the attachment here.

The following chapters describe the software's functions further.

6.3.1 Reception of the serial signals

Serial reception works as follows:

1. On each level change on the PA0 input pin (SCM signal) a PCINT0 interrupt is exe-
cuted.

2. If the PA0 pin is high, following level change, a bit on the data input pin PA1 has to
be shifted into the register pair for serial signals (rSerialH:rSerialL), starting from
bit 0 (rotate left). The number of received bits is down-counted from 16, if it
reaches zero the content of the serial registers is copied to the register pair
rRxH:rRxL, the flag bRxIn is set and the counter restarts with 16. Any bit recep-
tion sets the time-out counter rSerialTO to its start value.

3. Outside the PCINT0 routine the time-out-counter is counted down. If it reaches
zero, the counter of still-to-be-received-bits is restarted at 16.

The further handling of the 16 bits received in rRxH:rRxL is performed outside the Inter-
rupt-Service-Routine. Depending from the MSB in rRxH the lower 8 bits in rRxL are han-
dled differently. The modes are part of a table PosTable::

Page 60 of 112

../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_display_tn24/dcf77_watch_tn24_v4.asm
http://www.avr-asm-tutorial.net/avr_en/apps/tn24_lcd/tn24_lcd.html

1. Each line of the table starts with the respective ASCII character.
2. The two following bytes are the line and the column where information on the LCD

will be displayed (zero-based numbers).
3. If the parameter concerns a DCF77 info, its displacement in SRAM follows as a byte.

If not, 255 follows.
4. The type of displaying the parameter follows as byte. A zero simply displays the pa-

rameter as ASCII character. A 1 displays as a 2-digit decimal, a 2 as 3-digit deci-
mal. A 3 displays as a weekday (zero-based) and a 4

• shifts the received zero or one into a register buffer, and
• displays the last four received bits as binary ASCII characters.

5. The closing zero in each line brings the byte count to an even number of bytes.
6. The table ends ends with two zeroes.

Extending the ATtiny45 controller software with further parameters can simply be added
to this table. The structure can also be used with other controllers.

6.3.2 Seconds and serial interface time-out

For generating the seconds the timer TC0 is used. It divides the clock signal of 1 MHz (de-
fault clock rate) with a prescaler value of 8 and by 125, which yields a 1 ms time inter-
rupt. The interrupt counts down a counter in register pair rSecH:rSecL that starts with
1,000. If the counter reaches zero, the flag bSec is set and the register pair is restarted
with 1,000.

If the seconds flag is set, the seconds are advanced and displayed at the respective posi-
tion on the LCD. If the seconds reach 60, the seconds counter restarts.

The milli second interrupt also decreases the time-out value. If, after 8 ms, this reaches
zero the number of bits-to-be-received restarts with 16.

6.3.3 Debugging option

This option, if the debug switch Debug_display is set to Yes, simulates the reception of
serial signals. The bit combination in the constant cDebug_displayH and cDebug_dis-
playL is tested. The debug switch has to be set to No to assemble the final version of the
software.

6.4 Assembler source code for the DCF77 display with
ATtiny24
This is the software for the DCF77 display with an ATtiny24. The source code can be
downloaded from here in asm format. To assemble it needs the Include routines here.

;
; (Software still under construction)
;

Page 61 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/lcd/lcd.inc
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_display_tn24/dcf77_watch_tn24_v4.asm

Path: Home => AVR overview => Applications => DCF77 receivers => AM rectifier

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

AM rectifier with
ATtiny25

7 DCF77 AM rectifier with ATtiny25

For the DCF77 signal of 77.5 kHz from a direct receiver or for the IF of 32.768 kHz from a
superhet one needs a rectifier for AM signals. Usually one uses a diode rectifier. But as
diode rectifiers for AM RF/IF always have the disadvantage that their forward voltage of
0.2 to 0.3 Volt won't let them detect signal amplitudes smaller than that 0.2 to 0.3 V, I de-
signed and built a microcontroller rectifier. This device detects amplitudes of down to
5 mVpp.

Note that this design is limited to frequencies below 100 kHz, so the device is not de-
signed and doesn't work correct with an IF of 455 kHz or higher!

7.1 How it works
The rectifier works with a microcontroller, here an ATtiny25, and its built-in ADC channel
3. The controller runs with its built-in RC oscillator at a clock rate of 8 MHz (CLKPR is set
to 1 by software).

Page 62 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

7.1.1 Hardware

The ADC is working
in free running
mode, that is: he
restarts the next
conversion whenever
the conversion is
complete. The ADC
clock prescaler is at
4, so the ADC runs
with 2 MHz. As each
conversion in free
running mode takes
13.5 cycles, the ADC
works with a conver-
sion frequency of
2 MHz / 13.5 =
148.2 kHz and one
conversion lasts 6.75 µs.

The RF of 77.5 kHz or the IF of 32.768 kHz comes in as a sine wave with an amplitude be-
tween 0.0 and 5.0 Vpp. The voltage divider with the two 100kΩ resistors divides the oper-

ating voltage by two, the 1nF capacitor transfers the RF/IF to the ADC3 input of the AT-
tiny25, so that the sine wave produces the following 10-bit ADC conversion results from
the input voltage:

• no amplitude: ADC result approximately 512,
• positive swing: ADC result larger than 512,
• negative swing: ADC result smaller than 512.

So all the controller has to do is to

1. subtract 2 from the MSB of the result,
2. if that yields the carry flag being set: to invert the result.

That rectifies the signal: negative swings will get positive, positive ones remain positive
(Rectification). The result is nine bits wide (0 to 511).

This is repeated over and over again (with the ADC in free running mode) for 128 times,
hence over 128 * 6.75 = 864 µs. The maximum of these 128 measurements is the high-
est/lowest detected amplitude of the input swing. This maximum is selected from 128
measurements of 28 (32.768 kHz, 30.5 µs per wave) or 67 (77.5 kHz, 12.9 µs per wave)
sine waves, so that the maximum is very likely to be detected.

The detected maxima are added up 8 times, the result is divided by 16 to yield an 8-bit
average value for the PWM's compare B value. With that the measuring time is 8 * 864 µs
= 6.91 ms.

Page 63 of 112

7.1.2 Duo-LED option

The device can be
equipped with a red/
green or red/yellow
duo-LED to display the
results. Then display
on the LED works as
follows. With small
amplitudes red domi-
nates, the higher the
more greener the LED
gets.

This is achieved by
setting the comparer
values of TC0 to the
same value, the TC1’s PWM value in OCR1B. The OC0-bit-behavior is to set OC0A on the
beginning of the PWM cycle and to clear the OC0A on compare match (un-inverted). The
OC0B is reversed: it is set at the beginning and cleared on compare match. This yields the
following behavior:

When both comparers have a compare
match, the color changes from green to
red. If the compare match occurs at 255,
the red LED is never on.

The earlier the longer is the LED red on
and the green LED off. The time over
which one of the two colors are on is al-
ways 100%.

Page 64 of 112

If OCR0A is different from the OCR0B
value, the behavior is rather different. As
the OC0A output is set at PWM cycle start,
while OC0B is cleared, the green LED is
turned on.

This stays on until OCR0A is reached: this
clears OC0A and, as OC0B is also cleared,
switches both LEDs off. This changes later
on, when OCR0B is reached: this switches
the red LED on. This remains on until the
end of the PWM cycle.

This is also the case if OCR0A is larger
than OCR0B: the inactive time now has
both pins set. This mode reduces the
brightness of both LEDs, the larger the dif-
ference between OCR0A and OCR0B the
longer the pause with both LEDs off. The
duration of the green on and the red on
can still be altered, but only to the avail-
able rest of the time.

7.1.3 DC Output

TC1 produces the
output. On PWM cy-
cle start the output
pin OC1B is set, on
reaching compare
match B it is cleared
(positive PWM sig-
nal).

The averaged ampli-
tude feeds the com-
parer of the 8-bit-
TC1 timer that runs
as PWM with the
compare B in fast
PWM mode. The timer is clocked by the 8 MHz controller clock and without prescaling. The
PWM runs with a frequency of 31.25 kHz, one cycle lasts 32 µs. The PWM value is updated
every 13.82 ms / 32 µs = 423 cycles.

The OC1B output signal is filtered by a 3-stage RC filter with R=6k8 and C=150n. The
time constant of this RC network is t = 0.69 * R * C = 0.7 ms. The diagram shows the re-
sponse of the filter on startup with an 80% PWM pulse and to a level change to a 20%
PWM pulse after 35 ms.

Page 65 of 112

The approximately 15 to 20 ms that the RC network needs to swing to a new value is
short enough to detect 100 ms long amplitude drops for a transmitted 0-bit of DCF77 and
a 200 ms long voltage drop for a 1-bit.

The PWM hum of the RC network is

1. stage 1 (VC1, red): 0.29 Vpp,

2. stage 2 (VC2, yellow): 17 mVpp,

3. stage 3 (VC3, green): 5 mVpp.

So the PWM noise on the third stage is roughly one digit of a 10-bit ADC result and the RC
provides sufficient filtering.

Averaging over 16 measurements ensures that single failures to detect the maximum of
the input signal are smoothly handled.

7.1.4 Available resources

All drawings shown here are available as a LibreOffice Draw file here (see the last drawing
for the rectifier).

The LibreOffice Calc file am-rect_tn25.ods provides all calculations that can be useful
when changing the design and properties of the device (ADC sampling, clocking, RC-filter
and filter response, Duo-LED configuration, etc.). Please note that if you play around with
the values therein: do not increase the speed of the AD converter, the prescaler will have
to 4 or higher. Otherwise the interrupt service routine is not fast enough to handle all the
interrupts and blocks other program steps from being served.

7.2 Testing
I've tested the rectifier by using the generator to the
right. It generates a sine wave either with 77.5 kHz (no
parallel C) or 32.8 kHz (1n5 parallel to the coil). The
signal is not a very nice sine wave, but it fits to the rec-
tifier.

The potentiometer in the source
line of the FET allows to dim the
signal strength.

This is the rectifier on a test
stand. Unfortunately the genera-
tor does not provide a full 5 V
swing, so you do not get the
Duo-LED to full green color.

Page 66 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_am_rect_tn25/am-rect_tn25.ods
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr_drawings.odg

7.3 Software for the rectifier
The software for the ATtiny25 is written in assembler. The source code is here in
assembler source code format and is listed below. No fuses have to be changed, the in-
crease of the clock frequency from the 1 MHz default to 8 MHz is done by software.

The program is interrupt-driven. No sleep mode is used because the fast ADC sampling
eats up most of the time.

When assembling make sure that the two settings "DuoLed" and "LedOnly" are set to your
needs:

• If you do not need the Duo-LED, switch it off by setting DuoLed to Zero.
• If you want to experiment with the Duo-LED only set LedOnly to 1. If you program

the final, don't forget to set it to Zero again.

The program has been tested and works fine as designed.

The original source code for the ATtiny25 rectifier is here. This is only a HTML formatted
listing.

;
; ******************************
; * AM rectifier with ATtiny25 *
; * (C)2020 by DG4FAC *
; ******************************
;
.nolist
.include "tn25def.inc" ; Define device ATtiny25
.list
;
; **********************************
; P R O P E R T I E S
; **********************************
;
.equ Duoled = 1 ; 1 if Duo-LED attached
.if DuoLed == 1
 .equ DuoledSpeed = 2 ; Speed factor for Duo-LED
 ; 1: 30.5 Hz
 ; 2: 122.1 Hz
 ; 3: 488 Hz
 ; 4: 3.91 kHz
 ; 5: 31.25 kHz (use this when simulating)
 ; Test the Duo-LED only
 .equ LedOnly = 0 ; Display red/green only
 .if LedOnly == 1 ; Define colors
 ; The intensities of the LED colors
 .equ cLedOnlyColor = 0x20 ; Green=0x20, red=0xC0

 .endif
 .endif
.equ MaxAverage = 8 ; Number of maxima to be averaged, 2..128
.equ cMaxCnt = 32 ; Count of measurements for detecting maximum
;
; Error checking
.if (MaxAverage<2) || (MaxAverage>128)
 .error "Illegal MaxAverage value selected!"
 .endif
.if (2<<(LOG2(MaxAverage)-1)) != MaxAverage
 .error "MaxAverage has to be a power of 2!"
 .endif
.if (MaxAverage*cMaxCnt)>1024
 .message "Warning: Averaging too long for DCF77!"
 .endif
.if cMaxCnt<16

Page 67 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_am_rect_tn25/dcf77_am_tn25_v1.asm
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_am_rect_tn25/dcf77_am_tn25_v1.asm
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_am_rect_tn25/dcf77_am_tn25_v1.asm

 .message "Warning: Too few countings for max detection!"
 .endif
.if cMaxCnt>255
 .error "Too many counting events for max detection!"
 .endif
.if (DuoLedSpeed<1)||(DuoLedSpeed>5)
 .error "Wrong DuoLedSpeed setting!"
 .endif
;
; **********************************
; H A R D W A R E
; **********************************
;
; Device: ATtiny25, Package: 8-pin-PDIP_SOIC
;
; _________
; 1 / |8
; RESET o--|RESET VCC|--o VCC, +5V
; AM-IN o--|PB3 PB2|--o SCK
; DC-OUT o--|PB4 PB1|--o Red Anode, MISO
; 0V GND o--|GND PB0|--o Green Anode, MOSI
; 4 |__________|5
;
;
; **********************************
; P O R T S A N D P I N S
; **********************************
;
.equ pOutLedD = DDRB ; Portregister of LED
.if DuoLed==1
 .equ bOutLedD = (1<<PORTB0)|(1<<PORTB1)|(1<<PORTB4) ; DC output pin and Duo-Led
 .else
 .equ bOutLedD = 1<< PORTB4 ; Only the DC output for PWM
 .endif
;
; **********************************
; A D J U S T A B L E C O N S T
; **********************************
;
;
; **********************************
; F I X & D E R I V. C O N S T
; **********************************
;
.set cTc0Presc = (1<<CS02)|(1<<CS00)
.if DuoLedSpeed == 2
 .set cTc0Presc = 1<<CS02
 .endif
.if DuoLedSpeed == 3
 .set cTc0Presc = (1<<CS01)|(1<<CS00)
 .endif
.if DuoLedSpeed == 4
 .set cTc0Presc = 1<<CS01
 .endif
.if DuoLedSpeed == 5
 .set cTc0Presc = 1<<CS00
 .endif
;
; **********************************
; T I M I N G
; **********************************
;
; Clock = 8000000
; ADC prescaler = 2
; ADC conversion steps = 13
; ADC conversion frequency = 307.69 kHz
; ADC conversion time = 3.25 us
; Measurements per sine wave

Page 68 of 112

; at 77.5 kHz = 3.97
; at 32.768 kHz = 9.39
;
; Maximum detection
; Number of measurements = 32
; Sampling time = 832 us
; Sine waves measured
; at 77.5 kHz = 64.48
; at 32.768 kHz = 27.28
;
; Averaging maximums
; Averaging = 16
; Averaging time = 13.82 ms
;
; **********************************
; R E G I S T E R S
; **********************************
;
; free: R0 to R8
.def rAvgL = R9 ; Average sum, LSB
.def rAvgH = R10 ; dto., MSB
.def rInL = R11 ; Maximum detected, LSB
.def rInH = R12 ; dto., MSB
.def rMaxL = R13 ; Maximum LSB
.def rMaxH = R14 ; dto., MSB
.def rSreg = R15 ; Save/Restore status port
.def rmp = R16 ; Define multipurpose register
.def rMaxCnt = R17 ; Maximum counter
.def rAvgCnt = R18 ; Average counter
.def rAdcL = R19 ; ADC value read, LSB
.def rAdcH = R20 ; dto., MSB
; free: R22 to R31
;
; **********************************
; S R A M
; **********************************
;
.dseg
.org SRAM_START
; No SRAM used (only for stack)
;
; **********************************
; C O D E
; **********************************
;
.cseg
.org 000000
;
; **********************************
; R E S E T & I N T - V E C T O R S
; **********************************

rjmp Main ; Reset vector
reti ; INT0
reti ; PCI0
reti ; OC1A
reti ; OVF1
reti ; OVF0
reti ; ERDY
reti ; ACI
rjmp AdccIsr ; ADCC interrupt
reti ; OC1B
reti ; OC0A
reti ; OC0B
reti ; WDT
reti ; USI_START
reti ; USI_OVF

;
; **********************************

Page 69 of 112

; I N T - S E R V I C E R O U T .
; **********************************
;
AdccIsr:
 in rSreg,SREG ; Save SREG
 in rAdcL,ADCL ; Read ADC LSB
 in rAdcH,ADCH ; dto., MSB
 subi rAdcH,0x02 ;
 brcc AdcIsr1 ; No carry
 neg rAdcL ; Negative LSB
 com rAdcH ; dto., MSB
AdcIsr1:
 cp rAdcL,rMaxL ; Compare with maximum
 cpc rAdcH,rMaxH
 brcs AdcIsr2 ; Smaller
 mov rMaxL,rAdcL
 mov rMaxH,rAdcH
AdcIsr2:
 dec rMaxCnt ; Count measurements
 brne AdcIsr3
 ldi rMaxCnt,cMaxCnt ; Restart counter
 mov rInL,rMaxL ; Copy maximum, LSB
 mov rInH,rMaxH ; dto., MSB
 clr rMaxL ; Restart maximum, LSB
 clr rMaxH ; dto., MSB
 out SREG,rSreg ; Restore SREG
 set ; Set input flag
 reti
AdcIsr3:
 out SREG,rSreg ; Restore SREG
 reti
;
; **********************************
; M A I N P R O G R A M I N I T
; **********************************
;
Main:
.ifdef SPH ; If an ATtiny85 is used
 ldi rmp,High(RAMEND)
 out SPH,rmp ; Init MSB stack pointer
 .endif

ldi rmp,Low(RAMEND)
out SPL,rmp ; Init LSB stack pointer

; Increase clock to 8 MHz
 ldi rmp,1<<CLKPCE ; Enable CLKPR change
 out CLKPR,rmp ; in CLKPR
 clr rmp ; No prescaler
 out CLKPR,rmp ; in CLKPR
; Start values
 clt ; Input flag off
 clr rMaxL ; Maximum clear, LSB
 clr rMaxH ; dto., MSB
 clr rMaxCnt ; One full cycle max detection
 ldi rAvgCnt,MaxAverage ; Average over values
; Output pins as output
 ldi rmp,bOutLedD ; Output pins as output
 out pOutLedD,rmp ; in direction port
; Start Duo-LED
.if DuoLed == 1
 ldi rmp,0x80 ; Set both compare values to zero (LED half)
 out OCR0A,rmp ; Compare A
 out OCR0B,rmp ; Compare B
 ldi rmp,(1<<COM0A1)|(1<<COM0B1)|(1<<COM0B0)|(1<<WGM01)|(1<<WGM00) ; Clear OCR on match,
Fast PWM mode
 out TCCR0A,rmp ; To timer control port A
 ldi rmp,cTc0Presc ; Set prescaler
 out TCCR0B,rmp ; in timer control port
 .endif

Page 70 of 112

; Start PWM on TC1
 clr rmp ; Compare A and B to zero
 out OCR1A,rmp
 out OCR1B,rmp ; To compare port B
 ldi rmp,0xFF ; 8-bit PWM
 out OCR1C,rmp ; in compare port C
 ldi rmp,(1<<PWM1B)|(1<<COM1B1) ; PWM on OC1B
 out GTCCR,rmp ; in control port GTCCR
 ldi rmp,(1<<CS10) ; Prescaler=1, resolution in OCR1C
 out TCCR1,rmp ; in control port 1
; Init ADC
 ldi rmp,(1<<MUX0)|(1<<MUX1) ; Channel ADC3
 out ADMUX,rmp ; To ADC mux
 ldi rmp,0 ; ADC free running mode
 out ADCSRB,rmp ; in control port B
 ldi rmp,(1<<ADEN)|(1<<ADSC)|(1<<ADATE)|(1<<ADIE)
 out ADCSRA,rmp ; Start first conversion in control port A
; Enable interrupts

sei ; Enable interrupts
;
; **********************************
; P R O G R A M L O O P
; **********************************
;
Loop:
 brtc Loop ; Input bit not set
;
; Input the next maximum
Input:
 clt ; Clear input flag
.if (DuoLed==1)&&(LedOnly==1)
 ldi rmp,cLedOnlyColor ; Set color
 out OCR0A,rmp
 out OCR0B,rmp
 .else
 add rAvgL,rInL ; Add result, LSB
 adc rAvgH,rInH ; dto., MSB
 dec rAvgCnt ; Decrease counter
 brne Loop ; If not zero, continue
 ; Calculate average
 ldi rmp,LOG2(MaxAverage)+1
Input0:
 lsr rAvgH ; Divide average by 2
 ror rAvgL
 dec rmp ; Count down
 brne Input0 ; Continue dividing
; Set PWM value
 out OCR1B,rAvgL ; Set PWM compare B
 .if DuoLed==1
 out OCR0A,rAvgL
 out OCR0B,rAvgL
 .endif ;
 .endif
InputOut:
 ldi rAvgCnt,MaxAverage ; Restart counter
 clr rAvgL ; Clear average sum
 clr rAvgH
 rjmp Loop
;
; End of source code
;
; (Add Copyright information here, e.g.
; .db "(C)2020 by Gerhard Schmidt " ; Source code readable
; .db "C(2)20 0ybG reahdrS hcimtd " ; Machine code format
;

©2019-2020 by http://www.avr-asm-tutorial.net

Page 71 of 112

http://www.avr-asm-tutorial.net/

Path: Home => AVR overview => Applications => DCF77 receivers => PCB layouts

Applications of
AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega

DCF77 PCB
layouts

8 DCF77 PCB layouts
All described receivers use an RF input stage, though slightly different for large and for
small ferrite coils, as well as the ATtiny25 controller plus the ATtiny24 display stage. I
have developped a versatile PCB that allows to suit to all the variations that are described
here. A PCB with any desired concept can be scissored. All you need is a graphics de-
signer, such as PaintNet or GIMP for example, or, even better and more comfortable, the
TGIF vector graphics program for Linux.

All variations fit well on a half Euro-size PCB (80x100 mm), as shown below.

8.1 Modules and connections
This here shows the different modules and their related connections.

Page 72 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

8.1.1 The HF-RX module

This module has a size of 20x80 mm. It consists mainly of the FET and the capacitor
diodes for frequency adjustment. Two different variations, that differ only in the diode's
connections, are here available:

a. with anti-parallel diodes, e. g. with a KV1235Z and only two diodes used, or a
BB212, for larger ferrite coils, or

b. with parallel diodes, e. g. with the three KV1235Z diodes or three BB112, for
smaller ferrite coils.

This module has the following external connections:

1. the power supply for the whole receiver of +5 V, and
2. the cross antenna (or any other ferrite coil).

The module has the following in- and outputs:

I. the operating voltage GND and + 5V to the amplifier/superhet,
II. the two symmetric RF outputs HF+ and HF-,
III.the AFC input for adjusting the frequency.

Page 73 of 112

8.1.2 The Direct-Receiver modules

The two modules for directly receiving DCF77 with transistors or the one with the
TCA440's IF amplifier are both of a size of 30x80 mm. The following connections are avail-
able:

• To the RF receiver module:
1. the operating voltage of +5 V, and
2. the two symmetric RF inputs, and
3. the AFC output,

• To the controller- and display module:
1. the operating voltage of +5 V, and
2. the two inputs AFC and AGC,

• To the rectifier module:
1. the operating voltage of +5 V, and
2. the RF/IF output.

8.1.3 The Superhet receiver modules

(These modules are still under construction.)

8.1.4 The AM rectifier modules

The two alternative rectifier modules, either with diodes or with an ATtiny25 controller,
rectify the RF or IF and hand the result over to the controller/display module. The operat-
ing voltage for that stage stems from the Amplifier/Superhet stage.

8.1.5 The Control- and Display-module

This module is identical for all receiver variations. The controller ATtiny25 measures the
voltage that comes from the rectifier, and generates (via PWM plus RC filter) the AGC- and
the AFC-voltages. The AFC voltage line crosses the amplifier/superhet module to get to
the RF-RX stage. The DCF77 results are transmitted via the internal Two-Wire-Interface to
the ATtiny24, which displays the results on the connected LCD.

This module has additionally an ISP6 interface connector. This can supply the operating
voltage from an attached ISP programming adapter, if the programming adapter provides
5 Volt. If one of the three controllers shall be flashed, the programming pins RESET, MOSI,
MISO and SCK can be temporarily attached to the ISP6 plugs using enameled wires.

8.2 Links to the PCB layouts
The following parts are incomplete because not all layouts are complete.

To download the files place the mouse over the entry and, in the context menu, select
"Save linked file as ...".

8.2.1 Layouts for the modules

The PCB layouts of the modules are available here as gif graphics files, e. g. for the RF-RX
part those look like:

Page 74 of 112

The associated component placement plan looks like this:

Module
Size

Variation
PCB layout Component plan

mm gif tgif-obj gif tgif-obj

HF-RX 20x80
Anti-parallel HF-RX-A HF-RX-A HF-RX-A HF-RX-A

Parallel HF-RX-P HF-RX-P HF-RX-P HF-RX-P

Direct receiver 30x80
with Transistors Trans Trans Trans Trans

with TCA440 TCA440 TCA440 TCA440 TCA440

Superhet
30x80

internal LC-
oscillator

SuperLC SuperLC SuperLC SuperLC

divided XTAL SuperXT SuperXT SuperXT SuperXT

50x80 regulated LC-
oscillator

SuperRegLC SuperRegLC SuperRegLC SuperRegLC

AM rectifier 50x23
with diodes Diodes Diodes Diodes Diodes

with ATtiny25 Rect25 Rect25 Rect25 Rect25

Controltn45Display-tn24 50x57 CtrlDisp CtrlDisp CtrlDisp CtrlDisp

8.2.2 Complete PCB layouts with combinations

All PCBs linked here are 100x80 mm (half Euro-Format), except the superhet with regu-
lated LC oscillator (120x80 mm).

Here for example is the combination of HF-RX-a, TCA440-Direct receiver, ATtiny25-Recti-
fier and ATtiny25-Controller/ATtiny24-Display on one single PCB. Layout and component
placement are downsized (the originals below are double that size;!)

Page 75 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_ctrldispl_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_ctrldispl_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_ctrldispl.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_ctrldispl.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_amtn25_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_amtn25_best.gif
http://www.avr-asm-tutorial.net/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_amtn25.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_amtn25.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_amdioden_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_amdioden_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_amdioden.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_amdioden.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-reglc-module_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-reglc-module_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-reglc-module.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-reglc-module.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-xtaldiv-module_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-xtaldiv-module_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-xtaldiv-module.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-xtaldiv-module.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-internallc-module_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-internallc-module_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-internallc-module.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_superhet-internallc-module.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_tca440-amp_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_tca440-amp_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_tca440-amp.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_tca440-amp.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_trans-amp_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_trans-amp_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_trans-amp.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_trans-amp.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_hf-rx-p_best.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_hf-rx-p_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_hf-rx-p.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_hf-rx-p.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_hf-rx-a.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_hf-rx-a_best.gif
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_hf-rx-a.obj
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/modules/dcf77_hf-rx-a.gif

This is the associ-
ated component
placement plan.

Page 76 of 112

Short
name

HF-RX Direct
receiver

Superhet with
oscillator option

Rectifier Con-
trol
+

Dis-
play

PCB layout Component
placements

Anti-
paral-

lel

Paral-
lel

Tran-
sis-
tors

TCA
440

Inter
-nal
LC

XTAL
Divi-
der

Regu-
lated

LC

Dio-
des

AT-
tiny
25

as gif
for
tgif

as gif
for
tgif

Direct
Trans.

X X X X Trans Trans Trans Trans

Direct
TCA440

X X X X
TCA-
440

TCA-
440

TCA-
440

TCA-
440

Super-
LC

X X X X
Super-

LC
Super-

LC
Super-

LC
Super-

LC

Super-
XTAL

X X X X
Super-

XT
Super-

XT
Super-

XT
Super-

XT

Super-
LC25

X X X X
Super-
RegLC

Super-
RegLC

Super-
RegLC

Super-
RegLC

©2020 by http://www.avr-asm-tutorial.net

Page 77 of 112

http://www.avr-asm-tutorial.net/
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-reglc_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-reglc_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-reglc_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-reglc_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-reglc.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-reglc.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-reglc.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-reglc.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-xtaldiv_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-xtaldiv_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-xtaldiv_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-xtaldiv_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-xtaldiv.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-xtaldiv.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-xtaldiv.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-xtaldiv.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-internallc_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-internallc_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-internallc_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-internallc_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-internallc.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-internallc.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-internallc.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_superhet-internallc.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_tca440_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_tca440_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_tca440_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_tca440_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_tca440.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_tca440.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_tca440.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_tca440.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_transistor_best.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_transistor_best.gif
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_transistor.obj
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_pcblayout/dcf77_transistor.gif

Path: Home => AVR overview => Applications => DCF77 receivers => alarm clock m324pa
Applications of

AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega
DCF77 Alarm clock
with ATmega324PA

9 DCF77 Alarm clock with ATmega324

Highly experimental! Not tested yet!

With that project I will try to integrate

• the AM rectifier for 77.5 kHz RF or 32.868 kHz IF,
• the controller that controls the frequency of the input stage over the AFC line as

well as the RF/IF amplifier stages via the AGC line and decodes the DCF77 signals,
and

• the display that shows date and time received.

The picture shows the connections of the integrated module.

As this yields a full feature alarm clock, it should also include:

• an XTAL driven time base that advances the clock even without a DCF77 signal over
longer periods (or even never),

• the opportunity to adjust date and time with three keys and a potentiometer, so
that the clock works correct even completely without DCF77,

• setting an alarm time, at which melodies are played on a small speaker.

Page 78 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

• the opportunity to measure ambient light intensity and to adjust the backlight of
the LCD with that.

The ten connections to the right show the external components.

The project is an idea and not yet finished.

9.1 Selecting the controller
In order to perform all these tasks the controller must have

1. two PWM outputs at a high frequency for the AFC and AGC PWM,
2. a PWM with a frequency of 100 to 200 Hz for the backlight,
3. a 16-bit-timer in CTC mode with an OC output pin for generating the alarm tone

and the music to be played,
4. two xtal pins to clock the controller with a crystal,
5. an 8-bit bidirectional port for the data transfer to the LCD and for reading the busy

flag of the LCD as well as three single port pins for the control of the LCD,
6. three pins for the three keys, that can interrupt whenever one of the key is pressed

(either INTn or PCINTn),
7. three analog converter inputs for RF/IF amplitude measurement (high speed ADC

channel), ambient light sensor and a potentiometer to adjust date, time and alarm
time digits.

As one of timers also has to provide the 5-ms pulse for DCF77 signal analysis and for the
derived second pulse, I selected TC2 for that purpose. As this requires mixed CTC (to ar-
rive at exact divider results) as well as PWM operation, OCR2B was selected for the LCD
backlight PWM.

Page 79 of 112

This is avr_sim's device selection window with all necessary hardware features. Not many
different devices fulfill all the required properties. All of them end with a 4. A price com-
parison with my preferred electronics dealer showed the ATmega324PA is my preferred
selection.

9.2 The hardware
This is the complete hardware schematic for the alarm clock.

The three ADC channels ADC0, ADC1 and ADC2 are connected to the following external
devices:

• the RF or IF signal of the DCF77 receiver, to be measured for its amplitude inter-
nally, as ADC0 input channel,

• ADC1 has attached the ambient light sensor transistor, to be mounted to the out-
side of the clock's box,

Page 80 of 112

• on ADC2, the potentiometer is
attached that allows to select
numbers between 0 and 59 (for
seconds and minutes of the time
and the alarm time) or between
0 and 23 (for hours) as well as
all other digits to be adjusted by
the user).

Usually the ADC measures the RF/IF
amplitude in a very fast manner and is
in free running mode with interrupts
enabled. From time to time (the ambi-
ent light sensor every 1.28 seconds,
the potentiometer every 250 ms) the
free running mode and the interrupt
generation is stopped and the additional
ADC channel is measured in polling
mode.

The device is clocked with a 4.096 MHz
crystal on the XTAL1 and XTAL2 pins, so
that the operation of the clock over
weeks and months without synchro-
nization with DCF77 is exact enough for
an alarm clock and the clock does not
require re-adjustment.

The AFC- and AGC-signals are produced
by OC0A and OC0B via a two-stage RC
network. The PWM signal works at
16 kHz, while the RC's half frequency is
by 1000-fold lower at 14.5 Hz, so that
the RC networks filters the signal good
enough. While the humming on the first
capacitor is at 7.82 Vpp, the second ca-

pacitor is at 10 µVpp humming, as the

analysis in the sheet "rc_hum" in the LibreOffice calc file here shows.

Page 81 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_alarmclock_m324pa/dcf77_alarmclock_m324pa.ods

The three keys are connected to PB0, PB1 and PB2. Those have their pull-up resistors set
by software and throw PCINT interrupts to be served. After a key has been pressed, fur-
ther PCINT interrupts are blocked for a dead-time of 100 milli-seconds, so that no spuri-
ous signals can confuse the software.

All external components are plugged in via a 10-pin box connector, for which the pinning
is given in the lower right.

To program the ATmega324PA within the system, a standard ISP6 connector has been
added. This is not necessary in the final device, but eases program changes.

9.3 Mounting the alarm clock
TBD

9.4 Software for the alarm clock

9.4.1 Download of the complete final software

TBD

9.4.2 Software for hardware testing

TBD

9.4.2.1 Testing the crystal clock and the ISP interface

TBD

9.4.2.2 Installation and testing of the LCD

TBD

Page 82 of 112

9.4.2.3 Testing the LEDs

TBD

9.4.2.4 Testing the AFC and AGC signal
generation

TBD

9.4.2.5 Testing the keys

TBD

9.4.2.6 Testing the speaker

TBD

9.4.2.7 Testing the RF/IF rectifier

TBD

9.4.2.8 Testing the ambient light sensor

TBD

9.4.2.9 Testing the potentiometer

TBD

9.4.3 Software for the alarm clock

9.4.3.1 Date and time

The time that is independent from DCF77 syn-
chronization is derived from the system clock
of 4.092 MHz by TC2. TC2 is prescaled by 256
and the CTC mode in compare A divides the
clock signal by 80. That delivers a signal of f
= 4.096 MHz / 256 / 80 = 200 Hz. The regis-
ter rSecDiv counts from 200 down to zero. If
that reaches zero, the time and date has to be
advanced by one second.

Time and date is completely located at the
beginning of the SRAM. Time and dates are
stored in binary form, each component in one
byte, in a total of seven bytes. These bytes
are overwritten when DCF77 received a cor-
rect and complete time/date set.

This is the flow that increases the current
time and date by one second. The algorithm
to the left does the increase to the date and
time components, the algorithm to the right

Page 83 of 112

updates all changed digits on the LCD. All software flow drawings are available in the
LibreOffice draw file here.

Most of the increases are straight forward and simple. Only the calculation of the days of
the current month is a little bit more complex, thanks to a pope around the year 1500.

Realization uses the pointer register pair X (R27:R26) that is increased each time the next
time/date component is reached.

The display of the components on the LCD starts with setting the cursor to the line and
column where the component is located. All components, excluding the day abbreviation,
are displayed by calling the routine LcdDec2, that is part of the include routine for LCD op-
eration lcd.inc.

9.4.3.2 DCF77 analysis

TBD

Page 84 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/lcd/lcd.inc
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_alarmclock_m324pa/dcf77_alarmclock_m324pa_flow.odg

9.4.3.3 LCD operation

TBD

9.4.3.4 Adjusting date, time and
alarm time with the keys

TBD

If the user adjusts the date, we can
ease that by calculating the weekday
from the adjusted date, so that the
weekday is automatically correct. To
the right you see the flow scheme of
that calculation.

It is rather simple and based on the
weekday on 01.01.2000, which was
a Saturday. For each day and for
each year since then (difference mi-
nus one) we add one to the result.
The difference caused by the month
are a little more complicated. It is
held in a table in the flash memory.
The difference to be added for each
month (minus one) is read from that
table. As the table is based on a non-
leap-year with 365 days, we have to
add one for a leap year and for the
months above February. Finally we
have to add the number of leap
years since 2000 to the current year
(minus one), which is simply the
(year minus one) divided by four.

At the end we repeatedly subtract 7
until the result is smaller than 7
(Modulo calculation).

Those who want to play around with
the calculation, here is the source
code in asm format.

©2020 by http://www.avr-asm-tutorial.net

Page 85 of 112

http://www.avr-asm-tutorial.net/
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_alarmclock_m324pa/weekday_m324pa_v1.asm
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_alarmclock_m324pa/weekday_m324pa_v1.asm

Path: Home => AVR overview => Applications => DCF77 receivers => Direct regulated OpAmp
Applications of

AVR single chip controllers
AT90S, ATtiny, ATmega and

ATxmega
DCF77 direct
receiver with

regulated OpAmp
This project is experimental. I don't know if it
really works as planned here.

10 DCF77 AM direct receiver with gain-
regulated OpAmp and ATtiny25
DCF direct receivers need a regulated gain amplifier. The reasons for that are that

1. the information in the DCF77 signal is encoded in the amplitude, so amplification
must now be too high to avoid amplitude clipping,

2. too high amplification leads to self-oscillation of the amplifier. At necessary gains of
5,000 and higher this is an issue.

This concept here uses

• two operational amplifiers, that amplify the DCF77 signal, and
• uses an FET/resistor divider to regulate its gain, and uses
• an oscillation signal from an ATtiny25 to produce the negative voltage to increase

the resistance between the Drain and the Source of the FET and so to reduce the
gain of the OpAmp (AGC).

The output of the ATtiny25 on the two pins 3 and 7 can be configured as follows:

0. no signal, both pins remain low, or
1. original DCF77 signal on pin 3, inverted DCF77 signal on pin 7, no decoding or

change in the signal, or
2. decoded time and date transmitted over two synchronous output pins, or
3. decoded time and date transmitted over an asynchronous output pin, if the respec-

tive Clear-To-Send pin is on.

The constant cTxContent determines which content is transmitted in modes 2 or 3:

0. nothing, or
1. decoded time transmitted as serial ASCII each minute, in the format "T14:59" as

derived from the decoded DCF77 signal, or
2. decoded time and date as serial ASCII each minute, in the format

"T14:59D12/20/20WSu", or
3. the latter, but additional receiver status and debugging info added as lines, which

do not start with a T.

Page 86 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_rcvr.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

Conversion of the ME(S)T time to UTC can be configured within the software by setting
cUtc to one.

This receiver here therefore is a versatile piece of equipment: you can use it as a simple
DCF77 receiver that produces a High/Low signal to be decoded with another piece of
equipment, you can attach a simple display with a LCD to it and you can display DCF77
date and time information via a terminal program on a PC or Laptop. What ever your
needs are, the software is designed to fit these all.

To display the results you can use the RS232 and your PC or laptop or

1. a sync receiver with an ATtiny24 and an LCD here, or
2. an async receiver with an ATmega48 and an LCD here, or
3. an async receiver with an ATmega324 and a muxed 4-digit 7-segment LED here.

All drawings are available as Libre-Office-Draw file here.

10.1 Hardware of the regulated OpAmp receiver

10.1.1 Receiver hardware schematic

This is all you need:

• The ferrite antenna is brought to resonance with a fixed C and three varactor diodes
in parallel to adjust the resonance, if you do not need that part you can replace the
three varactors, the whole RC network from OC0A of the ATtiny25 and the capaci-

Page 87 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_opampreg_tn25/dcf77_opampreg_tn25_drawings.odg

tors on the cathodes of the varactors. And you can possibly add a trim capacitor to
do the resonance trimming manually.

• As I do not like the ferrite circuit to be on a different voltage than 0 Volt, and as the
CA3140 does not really work as amplifier with its positive input at 0 V (only if you
shift the offset voltage on Pins 1 and 5 with a 4k7 trim potentiometer widely to one
side - which is not really a stable operation) I decided

1. to divide the amplification load into two portions: one does a pre-amplifica-
tion by 100, the second stage by 1,000,

2. to operate both OpAmps at half the operating voltage (+2.5 V),
and to couple the ferrite LC circuit with a capacitor onto the medium voltage. That
meant to add a FET driver stage that provides a low resistance signal.

• In the first stage the direct amplification is done with the operational amplifier
CA3140. Do not use a 741 instead, it does not work properly with a single 5V sup-
ply. Gain is fixed at 100 by the two resistors.

• Before the signal enters the second stage, a FET driven voltage divider reduces the
signal gain. The FET's gate can have between 0 and -4.5V, the 100k is the upper
half of the voltage divider. On start-up and with small negative voltages the signal
gain is very small.

• The remaining signal behind the FET attenuator is then fed into a second OpAmp. If
you don't need the gain of 1,000, because your DCF77 signal strength is already
large enough, you can either skip this second OpAmp (within the near-field of
DCF77) or you can reduce its gain by increasing the 1k resistor to 10k or 100k.

The analog signal then is transferred to the controller's ADC3 input pin (see below).

10.1.2 How the antenna circuit works

The 1 mH ferrite coil has been made from a 10-cm ferrite rod, which was covered over its
hole length with two to three layers of adhesive tape, on which a coil with 0.25 mm cop-
per wire was twisted. To find out how many windings would be necessary for 1 mH I
stopped at 100, 130 and 160 windings and measured the inductivity. With these values I

determined the specific inductivity per winding2 AL. These values are shown in the table.

Windings Inductivity [mH] AL [nH per w2]

100 0.40 39.72

130 0.75 44.56

160 1.05 40.88

The AL value, therefore, is roughly 41 nH/winding2. For a 2 mH coil roughly 220 windings
would have been necessary.

Page 88 of 112

Ohm's resistance of the 160 windings is 5.6 Ω, inductive resistance at 77.5 kHz is 510 Ω.
The C needed for resonance at 77.5 kHz is 4.03 nF. Preferred Styroflex capacitors of
3.3 nF are in the market, so with the three varactor diodes at 243 pF the resonance can
be reached. A 3.9 Styroflex would also be fine, but the varactors would then be very small
in capacity. You can even use any different capacitors besides Styroflex, because the ca-
pacity is regulated anyway so that accuracy and long-term reliability play no roll anyway.

The LC circuit's resistance, when L and C are in resonance at 77.5 kHz, is around 50 kΩ or
higher. So usual transistors or PNP/NPN OpAmp entry stages are not recommendable, the
OpAmp should have a FET on the input.

10.1.3 How the regulated OpAmp works

In the original de-
sign displayed here I
tried to replace the
resistor R1 in a lin-
ear amplifier stage
with a FET. Its gate
voltage can be var-
ied between zero
and minus 4.6 V.
That varies the re-
sistance of the

Drain-to-Source pins of the FET between some 100 Ω and up to more than 1 MΩ.

This shows the variation of
RDSon of the three BF245
FETs. The curve starts at
roughly 200 Ω (for a BF245A)
or less and, with rising nega-
tive voltages on the gate pin,
rises to more than 100 kΩ.
The BF245C needs higher
negative voltages than the A
or B type for the same RD-
Son.

This type of diagram is not
available for other JFETs. Usu-
ally only IDSS is listed, which
is the current through the
Drain-Source, with the gate
at 0 V and at a certain volt-
age (mostly 15 V) on the
drain. This is useful for calcu-
lating RDSon at 0 Volt, but yields too high and unrealistic resistances (the 15 V are unre-

Page 89 of 112

alistic). Therefore I have measured a BF246B by adding a resistor on the drain and mea-
suring the drain's voltage at different gate voltages. The diagram shows for the limited
number of measurements that the current through the drain yields realistic RDSon values
(in red) and that the calculated OpAmp gain is between one and 100,000.

Unfortunately, the
CA3140 does not re-
ally work as an am-
plifier with the posi-
tive input pin on
ground. Only if you
un-balance the bias
voltage with a 4k7
trim potentiometer
on pins 1 and 5
(with the middle of
the potentiometer on
Ground) very widely
to one side, the am-
plification starts. The
trim range over which the CA3140 then amplifies is very narrow. If you leave this range,
the CA3140 starts swinging wildly. The range where it works is depending from the gain
and even reacts on the varactor diodes of the attached LC circuit. Nothing you can rely on
without running into serious trouble.

I had to change the concept. After trying out different solutions, the schematic shown
above has yielded a reliable amplifier. If you reduce the capacitors, e. g. down to 1 nF too
much noise and instability is the consequence. Which is to be expected with a high ampli-
fication rate of 100,000, because already 10 µV noise already make up 1 V if amplified by
100,000. The positive side is that the FET-decoupled LC circuit, adjusted to DCF77, hasn't
reacted on my energy saving lamp, that produces lots of noise near 77.5 kHz (which
causes usual commercial receivers to malfunction).

A gain of 100,000 means that 10 µV HF are amplified to 1 V on the output. This amplifica-
tion is high enough in the near-field and in some distance to DCF77.

As you can see from the diagram of the RDSon of the BF256 the amplification is steeply
rising/falling in the middle of the curve. That means that already small change of the neg-
ative base voltage of the FET lead to the signal being too small or too large. By adjusting
the gain of the two OpAmp stages, you can change the regulating voltage to get to the
less steep sides of the diagram. Just change the resistors from the negative input to
ground, e. g. to 1 or 10 or 100 kΩ. As both stages do not invert the input signal, even an
amplification of 1,000 does not lead to back-feed and wild swinging.

10.1.4 Serial receivers for display

The serial signals that are produced by the ATtiny25 are invisible. Only if you add addi-
tional hardware, you can display that. Those who don't want to use a PC or Laptop and
their terminal program have the following opportunities to see what is going on:

Page 90 of 112

1. a receiver for sync serial signals with an ATtiny24 and an attached LCD module
here, or

2. a receiver for async serial signals with an ATmega48 and an LCD here, or
3. a receiver for async serial signals with an ATmega324 and a very large 7-segment

LED display for displaying the received time here.

Anyone can find its appropriate solution from that, the tn25 delivers all you need to have.

10.2 Hardware of the ATtiny25 controller
Control and regulation as
well as analyzing the
DCF77 signals is the task
of an 8-pin ATtiny25. You
can also use an ATtiny45
or 85, if you want to
waste unused flash and
EEPROM memory space.

The following functions
are implemented:

1. measuring the
amplitude of the
DCF77 signal on
pin ADC3 (pin 2),

2. generating the AFC control voltage on the OC0B output pin (pin 6), and
3. generating and outputting the desired results via pin 3 (either the original DCF77

amplitude state, the data for sync serial transmission or the TXD signal for async
transmission) and pin 7 (either the inverted DCF signal, the Clock signal for serial
sync or the CTS input for async serial signals).

These hardware functions are described nearer in the following chapters.

10.2.1 Measuring the DCF77 signal

The ATtiny25 measures continuously the maximum amplitude value of the OpAmp's out-
put on his ADC3 input. As the signal swings around the medium voltage of 2.5 V, these
values are rectified mathematically, so that even unsymmetrical signals can be measured
correct.

The software then determines two values from 256 of such measurements:

1. the maximum amplitude value (above or below the average), and
2. the average of the signal.

The second value should be around +2.5V (8-bit-ADC value = 128) and serves only for
the mathematical rectification of the signal.

The first value controls the AGC: if this value is higher than the pre-selected value of 2.0V
(positive = 4.5V, negative = 0.5V, ADC between 230 and 25), the AGC voltage generator

Page 91 of 112

is switched off. This decreases slowly the Gate voltage of the FET and the amplitude gets
smaller.

The further treatment of the measured maximum values is described in the software sec-
tion.

10.2.2 Generating and filtering the AFC voltage

The OC0A-PWM generates a pulse-
width-modulated 8-bit-rectangle, which
is filtered with a three-stage RC net-
work. The output controls the three

varicaps on the LC circuit.

The three stages are
necessary to remove
PWM noise from that
signal. In the first
stage there are still
420 mV ripple (see
calculation sheet
opampreg_OC0A in
the Libre-Office Calc
file here). In the sec-
ond stage this goes
down to 19 mV, in
the final stage to
3.6 mV. This ripple
varies the LC input
stage by roughly 7.2 Hz, small enough for operating the LC stage and below the 256-stage
resolution of the PWM (40 Hz per digit).

The very good filter
properties of the RC
have an adverse ef-
fect: it delays adop-
tion to changed PWM
values. The delay
when changing the
PWM value by 8 lasts
roughly 2 seconds,
as shown in this dia-
gram. Changes by 8
occur at start-up
when the AFC is
scanned to find the
first approach to the optimum value. That means that the software has to wait for two
seconds until the changed voltage has settled.

Page 92 of 112

../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_opampreg_tn25/dcf77_opampreg_tn25.ods

Scanning is per-
formed at the begin-
ning. The OCR0A
value is set to 255
and is reduced by 8
in 28 stages. After
the delay the maxi-
mum and its average
is measured for 256
times (=65,536
measurements, 2.3
seconds long). The
difference between
the maximum and its
average helps to identify whether the input signal at this frequency is a steady-amplitude
transmitter or is DCF77. This because the low-amplitude phases of DCF77 reduce the av-
erage, and in 2.3 seconds at least one amplitude reduction takes place. This is simulated
in the following diagram over 80 seconds long. The OCR0A value at the maximum differ-
ence between maximum and its average is finally selected as start value for the AFC and
written to the OCR0A portregister.

As each scan value is settling over 2.3 seconds and then measured over 2.3 seconds, the
whole scan phase lasts 129 seconds or two minutes long.

The further adjustment of the AFC is performed during normal operation. Here, the OCR0A
values are varied by +/-1. More about the scan phase and AFC adjustment during opera-
tion can be found in the software section.

10.2.3 Generation and filtering of the AGC voltage

The generation of the negative
control voltage for the gate of
the FET (AGC) is done with a
coil, two capacitors of 470 nF
and two Germanium-Diodes. If
OC0B produces a rectangle,

this generator delivers -4.6 V, if permanently on. This is enough for all types of FET (A to
C types). Driving the OCR0B-PWM output with other OC0B compare values than 0x7F has
nearly no effect, the control voltage has to be regulated by switching the output pin OC0B
off and on, the long time constant of 10 MΩ * 470 µF is long enough to not change control
voltages too fast, e. g. when DCF77 is reducing its amplitude to transmit a zero (100 ms)
or a one (200 ms), and to smooth the signal during pump phases (when full, the AC on
that 470 µF capacitor is at less than 1 mV).

If the generator is off, the capacitor unloads via the resistor. This increases the negative
gate voltage to more positive values, RDSon of the FET gets smaller, the divider between
the OpAmp stages lets less amplitude through to the second OpAmp and so reduces the
overall gain.

Page 93 of 112

At start-up, the ca-
pacitor is unloaded
and RDSon has its
lowest value. So, on
start-up no input
signal in the second
stage is present.
Only after the OC0B-
generator has pro-
duced enough load,
the second stage
starts amplifying.
Loading ends when
the maximum al-
lowed amplitude has been reached.

During normal operation, if the long-term amplitude maximum falls below a minimum
value, the generator is again switched on. As the 2.3-second average always includes one
or two amplitude drops, the generator does not react on short-term drops.

On more details on the algorithm that controls the AGC voltage see the software section
below.

10.2.4 Output of results

The two pins PB2 and PB4 produce the output signal, depending from the selections in the
source code:

0. If the constant cTxMode is zero, both output pins are permanently low.
1. If the simplest method 1 is selected, pin 3 (Data) follows the DCF77's signal

strength: normally high, when a zero or one is transmitted it goes low. Note that
for recognizing a low at least three maximum values below the long-term maximum
average is necessary, so that a delay of 30 ms occurs. For those who need an in-
verted signal: just use the output pin 7 (Clock/TXD) or set constant cRevert to
one.

2. If serial synchronous output is selected with bTxMode = 2, data and messages are
send over the two pins. The bits of the character stream are placed on the DATA pin
3, starting with bit 0, the CLOCK pin 7 is activated for one third of the time per bit
(baud rate) and after another third the next bit is placed on the DATA pin. All con-
tent is send as ASCII characters. The baud rate can be adjusted by the constant
cBaud (in Baud or bit per second).

The scheme shows transmission of a 0xAA byte with 10 kBd. The three phases al-
low the receiver to prepare and perform its actions. Each eight bits form one char-
acter, all bits are send without additional pauses in between. The end of a transmit-
ted line is finalized with a carriage return and a line feed character.

Page 94 of 112

3. In mode 3 all results and messages are send in asynchronous mode, with a start bit
and two stop bits (1N8), over the DATA/TXD pin:

This shows such a transmis-
sion over a RS232 line, with a
baud rate of 9k6. The +/-
12V level over the RS232 line
can be seen. Such a level
converter looks like this.

Only the CTS signal of the
RS232 is used: it has to be
activated to allow transmis-
sion. Baud rates are adjusted
with the cBaud constant,
cRevert = 1 inverts both sig-
nals. Lines are finalized with
CR and LF again.

The selection of what shall be trans-
mitted can be adjusted in cTxCon-
tent:

0. Zero transmits nothing.
1. One transmits the time in the format "Thh:mm:ss", preceeded by a T. It follows a

M for Mid-European-Time, a S for Mid-European-Summer-Time or a U for UTC. A
CR+LF follows.

2. Two transmits the time, preceeded by T, then M/S/U for the time format, then a D
for the following date. If cEN in the ATtiny25 is one, the date is send as "MM/DD/

Page 95 of 112

YY", if zero as "DD.MM.YY". Then a W and the two characters of the weekday fol-
low, finalized by CR+LF.

3. Three additionally sends relevant messages on the status of the controller such as
the adjusted AFC-PWM value as "F = 123" and the state of the AGC generator as "G
= On/Off" and so-called E numbers with DCF77 time/date conversion errors, as well
as time and date in the long format like above.

10.3 The software

10.3.1 Software download

The software is still under construction. $$To be done$$

10.3.2 Software overview

The software has to do the following:

1. The DCF signal that comes in from the ADC3 input pin has to be converted to a dig-
ital value, has to be rectified (as positive distance from the averaged mean value)
and from that

• the maximum of 256 measurements of the amplitude has to be identified,
and

• the average of those 256 measurements has to be calculated.
This is all done within the interrupt service routine. To speed things up, only the 8
most significant bits are read from the ADC and averaging sums up those raw val-
ues in a 16-bit register pair. After 256 measurements (roughly 7.3 ms) the MSB of
the sum is copied to the register rAvg. This value is only used to determine the
rectifier's mid value, to be subtracted from. If subtraction of the average from the
ADC raw result sets the carry flag, the value is complemented (subtracted from
zero). This value is then compared with the previous maximum in rMaxM and, if
larger or equal, replaces this maximum. After 256 measurements the value is
copied to rMax and the bAdc flag is set. Further processing is outside the interrupt
service routine.

2. Outside the ISR it is checked whether the AGC generator is currently on (bGain =
0). If this is the case and if the rMax value is equal or above the selected value in
cMaxLevel (2 Vrectified = 4 Vpp) the AGC generator is switched off, the flag bGain
is set and the long-term averaging of the maximum is restarted.

3. If not currently charging the AGC, the long-term maximum is calculated by sum-
ming up 256 maximum values. The MSB of this sum is written to rLTMax. If this
value is smaller than the minimum level in cMinLevel (0.5 V) the AGC generator is
switched on again and the flag bGain is cleared.

4. If not, the DCF77 signal recognition is performed as follows:
• If the previous amplitude was high (flag bHigh = 1) and if the short-term

maximum is smaller than the long-term average maximum, a cycle counter
is decreased (from three down to to zero). If that is the case, the amplitude
has changed to low. In that case bHigh is cleared and the cycle counter is
checked whether the high phase counter is within the bounds of a minute
change. If so, a minute change is performed.

Page 96 of 112

• If the previous amplitude was low (flag bHigh = 0), the same mechanism
takes place. If this phase ends, with the three-counter reaching zero, it is
checked whether the previos low-phase was in the range of a zero or a one.

5. If output options are enabled, the respective outputs have to be written to the out-
put buffer and buffer transmission is started. These parts are only assembled if so
enabled.

To adjust the AFC voltage,

1. a scan at the beginning finds the raw area, where DCF77 transmits, and
2. during the decoding running, the PWR is running with one digit lower and one digit

higher values, which allows a fine identification.

The scan works as
follows. It starts with
the highest possible
voltage that TC0 can
produce (OCR0A at
255 respective +5V,
lowest capacity of
the varactors, high-
est frequency of the
LC)- After waiting for
2.3 seconds to ac-
commodate the RC
network to the new
value, the 256 max-
ima are measured, for which the maximum and the average are calculated. If the differ-
ence between the maximum and its average is higher, this value is saved. Then the value
of the PWM is decreased and the same procedure is repeated. If the PWM value reaches
its minimum (by default 39), the scan ends and the OCR0A value at the detected maxi-
mum is written to OCR0A.

See below for a flow diagram of this scan.

When running normal, the PWM value is varied with -/+ 1 digit and the same difference is
used to re-adjust the AFC to one of the values -1, 0 or +1.

Page 97 of 112

10.3.3 The AD conversion of the
input signal

The AD converter runs in free auto-start
mode, which means: it restarts the AD
whenever the previous result has been
read. As the ADC has to detect the maxi-
mum of the 77.5 kHz DCF77 wave, it
runs nearly as fast as possible (2 MHz
controller clock, AD prescaler = 4, AD
frequency roughly 35 kHz). So it mea-
sures approximately one value per two
sine waves on the input. An analysis
shows that this is sufficient and does not
produce too much erronous values. Re-
sult fetch, maximum detection and aver-
age calculation is performed within the
ISR of the ADC.

The timing is shown in the calculation
sheet DCF77clocking of the Libre-Office
file here, with the parameters in the
sheet opampreg_ADC. The sheet
opampreg_maxdetection simulates
the maximum detection over 256 mea-
surements. As the ADC is restarted only
after the previous result has been read,
the effective number of conversion cy-
cles is 14.25. Sampling 256 measure-
ments lasts roughly 7,3 ms.

To avoid lengthy division routines, the
average calculation over 256 measure-
ments is held as simple as possible. Be-
cause only 8-bit values are relevant
here, the ADLAR bit of the ADC is set
and only the high byte of the result is
read.

The detection of the maximum and the
calculation of the average are done
within the interrupt service routine. This
needs between 27 and 32 clock cycles
for that. If the controller would be at its
default 1 MHz clock and the AD prescaler
would be two, one measurement would
last 28 controller clock cycles. That
means that there is no time left to do
something else, e. g. for transmitting or calculating long-term averages, but to collect AD
values and restart the ADC. Therefore the default clock of the ATtiny25 of 1 MHz is in-

Page 98 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_opampreg_tn25/dcf77_opampreg_tn25.ods

creased to 2 MHz, for which the clock prescaler CLKPR is set to four at the beginning. At
2 MHz clock the controller provides enough spare time for the 27 to 32 clock cycles of the
ISR as well as for other purposes such as transmitting.

10.3.4 OC0A and OC0B adjustment: The AFC scan at start-up

This flow diagram shows the scan phase, that starts after beginning and that is performed
outside the ISR. The ISR of TC0 initiates this every 10 ms by setting its flag bit, if its
down-counter reaches zero.

At start-up the 470 µF capacitor is not loaded and starts loading. In this phase it is only
checked if the maximum is below the threshold level. If this is the case, nothing else hap-
pens. If the threshold has been reached, the bGain bit is set, the generator is switched
off, the averages are restarted and normal processing can begin.

By summing up 256 short-term measurements of the maximum an average of the maxi-
mum over 2.3 seconds is calculated. If those 256 measurements are available, it is
checked whether the maximum are below the selected min level. If that is the case, the
generator is restarted again and bGain is cleared.

If the 256 values have enough amplitude, the MSB of the maximum and the MSB of the
sum is stored in the long-term registers for further use.

At start-up the raw adjustment of the frequency has to be performed. During this time,
the bScan bit is clear. Scanning starts with 255 in the OCR0A port.

This phase is necessary because there could be other transmitters within the LC reception
band:

1. At first: the tenth harmonic of the TC0-PWM, that produces the AFC voltage and
that generates the AGC voltage from time-to-time is at 78.12 kHz and not very far
from DCF77. So better not waste space and place the antenna circuit as far away
from the ATtiny25 and the PWM components as possible. Anyway, this does not
produce an amplitude-modulated signal but a steady noise.

2. Here at my location south of Frankfurt a strong signal on 80 kHz is seen, for which I
do not know where it is coming from.

3. My energy saving lamp transmits constantly near 70 kHz.

It is insufficient to measure only the maximum of the received waves, because you would
be stuck to these constant-carrier-signals instead of DCF77. So it is the second-pulses that
are the relevant detection criteria for DCF signals. Only the signals where the maximum is
by 10 or 20% larger than the average maximum promise to the DCF77 carrier.

As long as the scan is active a bWait bit = 0 lets the scan continue for another 2.3 sec-
onds. Only if this bit has become one, the value is read and compared with the previous
ones. Each of the 28 measurements in the scan phase is evaluated for this difference, the
maximum difference and its associated OCR0A value are stored.

In each scan step the OCR0A value is decreased by 8 until it becomes smaller than 39
(AFC = 0.76 V). If that is reached, the scan ends and the optimal OCR0A value is written
to OCR0A.

Page 99 of 112

10.3.5 The AFC in normal
operation

After absolving the raw scan, the following
algorithm adjusts the AFC voltage.

1. The long-term difference between the
long-term maximum minus the aver-
age maximum is calculated and
stored in SRAM (measurement 1).

2. The current OCR0A value is de-
creased by one and, after a wait pe-
riod, the long-term difference is mea-
sured and registered (measurement
2).

3. Then the OCR0A value is increased by
two and the same procedure is per-
formed (measurement 3).

The maximum of the three stored values is
selected as next approach.

10.4 Analysis of the DCF77 signals

This is the flow diagram of the DCF77 signal
analysis. Displayed here is solely the recog-
nition of zeros, ones and the minute
changes.

It starts with halving the long-term maxi-
mum, this value is used to determine zeros
and ones and high-amplitude phases. The
duration counter rDcfCnt is increased by
one.

Further processing depends from whether
we are in a high phase of the amplitude
(bHi = 1) or not. If in a low amplitude
phase (left part of the diagram), it is
checked whether the short-term maximum
is still lower than halve the long-term maxi-
mum. If that is the case, the counter rCnt is
restarted at three.

Page 100 of 112

If not, the counter rCnt is decreased. If that reaches zero (after three consecutive highs),
the direction bit bHi is set and the duration of the low phase is checked if it is within a
zero or one range. If it is not in these two ranges (too short, between a zero and a one,
longer than a one), an error is generated and processed (with output, if so configured).

Correct zeros and ones are written to the carry flag C and are shifted into the eight DCF
bit storages in the SRAM (sDcfBitsN). The number of received bits is increased, if 59 is ex-
ceeded another error results.

During a high phase (right side of the diagram) the same recognition of a level change
takes place. If so, the duration is compared with the range of a minute change (1800 ms -
tolerance to 1900 ms plus tolerance plus one). If the duration was shorter than a minute
change, it is checked whether the signal was between 800 ms - tolerance and 900 ms plus
tolerance plus one. These signals appear between single bits and are ok (no error mes-
sage triggered).

If a minute change has occurred, it is checked whether exactly 59 bits had been regis-
tered. Then it is checked whether
the parity bits for hours, minutes
and dates are correct. If that is
also the case, the DCF bits are
converted to time and date in
ASCII (see next chapter) and, if
so configured, converted to UTC
(see overnext chapter). If the
time and date are completed,
those are send over the serial in-
terface, if so configured.

10.4.1 Conversion of the
DCF77 data bits to time/date

This is the location of all 59 bits
that result from right-shifting of
all bits in SRAM.

The following remarks to that:

• The 59th bit (Parity date)
includes all date bits alto-
gether, the parity bits for
hours and for minutes in-
clude only these bits.

Page 101 of 112

• Information, that is completely inside a byte, such as the year-tens, can be copied
and shifted right (in this case three times), the upper bits be cleared with an ANDI
on the lower bits (in this case 0x0F), and an ASCII-Zero added to yield the decimal
digit.

• Bits that span over more than one byte have to be copied and shifted left over
Carry into the higher byte first.

• The two bits 21 and 1 have to be one and zero, otherwise an error has happened.
• The bits 19 to 17, that deal with the summer and winter time, are only needed for

the UTC conversion.

When accessing such
very long records of
bytes the AVR's ability
to access bytes, where
Y and Z point to the
base, with a distance
and with LDD/STD is
very helpful. To use
this feature I grouped
the time/date record
as follows and added
distance values.

The SRAM table is
structured systemati-
cally to optimize trans-
parency and under-
standably.

The column Dist gives
the displacement for
accessing the byte
with LDD r,Y/Z+d or
STD Y/Z+d, r. The for-
mulation LD
R16,Y+dStrT yields the
content of the table on
the position dStrT, if Y
points to sDcf.

Page 102 of 112

10.4.2 Checking the parity

This is the parity checking rountine's flow diagram. Normally, when
hours and minutes parities are checked, the T flag is cleared on
entry. The data byte, including its parity bit, is send into the rou-
tine and it ends with a cleared T flag, if the parity is fine. If you
have to check further bytes, like in the date parity, rather call ParN
which uses the previous state of the T flag instead.

10.4.3 Conversion of the DCF77
date and time to UTC

This is rather lengthy if you want to
convert time and date to UTC in a cor-
rect manner, so that the displayed date
is also correct when the day already
changed in ME(S)T time, but not yet in
UTC time. That requires going back in the date, which is more
or less complicated on the 1st of January, where anything
changes, including the years.

10.5 Serial transmission of results and status

Serial sending uses TC1 as baud rate generator and for the
whole timing of the transmission process. As the 8-bit TC1 in
the ATtiny25 allows prescaler values between 1 and 16,384, a
rather accurate timing can be achieved. Baud rates beyond
50,000 get more rough, but who needs such high rates at all.
The inaccuracy is listed in the symbol table that gavrasm as
well as avr_sim produce at the end of their listing. The two
constants cBaudEff (effective Baud rate) and cBaudDiff in
0,01% resolution can be see. The 9k6 async baud rate comes
out with 9,615 Bd, which is by 0.16% too high. Such small dif-
ferences are insignificant for a robust RS232 interface.

During operation a number of result (each minute) and status
messages (each second) can come up. Those are written to a
transmit buffer in SRAM, which spans from sBuf to sBufEnd. If
the line is complete, carriage return and line feed characters
are added as well as an ASCII-Null to end transmission.

If the buffer is ready to transmit,

1. the pointer X points to the buffer start,
2. in the synchronous case rTxCnt is set to two,
3. a one is written to the bit counter rTxBit to provoke a

read-next-character from buffer,
4. the flag bTx in the flag register rFlag is set,
5. the TC1 counter TCNT1 is overwritten with zero, and
6. the interrupt mask register bit OCIE1A of the counter is

set, by that allowing interrupts from TC1.

Page 103 of 112

The complete transmission is performed within the ISR, of which two versions are in the
source code and enabled by the constant cTxMode:

1. cTxMode=2 enables the sync mode,
2. 3 enables the async mode.

In both modes the constant b>cReverse = 1 inverts the polarity of both output pins.

Because the async- and the sync mode work different, those are described in two sub-
chapters that follow.

10.5.1 Serial transmission in sync mode

The flow diagram shows
the interrupt execution
of the TC1 Compare
Match. The red numbers
display the number of
clock cycles required.

In sync mode the inter-
rupt occurs three times
more often than in
async mode. The phase
counter rTxCnt decides
what to do next. 1 and
0 activate and deacti-
vate the CLOCK output
pin. Phase 2 places the
next bit onto the DATA
pin (lower part of the di-
agram) and decrements
the number of bits to
send in rTxBit. If that
reaches zero, the next
ASCII character is read
from the buffer. If that
is ASCII-Null, the trans-
mit is terminated and
the flag bTx is cleared
as well as the interrupt
flag of TC1. If not, the
bit is placed to the DATA
pin.

All different execution rows need less than 32 clock cycles. Only in a few cases ADC inter-
rupts can be delayed, but only for short. Only in high baud rates beyond 60 kBd these
cases block the complete interrupt scheme. Therefore the source code limits the sync
baud rate to below 31 kBd.

Page 104 of 112

If cTxContent selects the output of the short time format, the transmit routine needs, at
10 kBd, roughly 8.8 ms for that. When long format is selected, these are 18 ms long. As
both occur only once in a minute, those are no relevant occasions.

This shows the transmission of hexadecimal 0xAA (=1010.1010) over the data and clock-
Pins in sync mode.

Page 105 of 112

10.5.2 Serial transmission in async mode

The flow diagram
shows the interrupt ex-
ecution in async tran-
mission mode.

In async mode each in-
terrupt stands for one
bit. Per 8-bit-character
one start bit and two
stop bits are added.
Due to this the baud
rate is 8/11th of the
character speed.

The interrupt service
routine starts with
decrementing the num-
ber of bits in rTxBit. If
this reaches zero, the
next character is read
from the SRAM buffer.
If that is ASCII-zero
transmission ends. If
not, the start bit is
send (when cRevert =
0 the start bit is high, if
1 it is low). If the num-
ber of bits to be send is
smaller than three stop
bits are send. On any
other number of bits one further bit is shifted into carry and the TXD output is set or
cleared.

All different flow pathes require at max. 27 clock cycles. The maximum baud rate, at
which the transmit blocks any other activities, is 74.1 kBd. If the time for each bit is con-
sidered correct, the baud rate for a blockade is reached at 95 kBd. Therefore the baud
rate in async mode is limited to 47 kBd in the source code.

The minimum baud rate is below 45 Bd, low enough to start a DCF77 time service on
short wave that transmits the DCF77 time/date/weekday via a Radio-Teletype (RTTY)
transmitter.

At 9k6 the long format needs 25 ms, the short format 12,6 ms.

The two simulation diagrams show the character 0xAA in async mode at 9k6, to the right
the inverted signal how it can be fed into a MAX232.

Page 106 of 112

Applications of

AVR single
chip

controllers
AT90S,
ATtiny,

ATmega and
ATxmega
DCF77
sync
serial

receiver
with an

ATtiny24

Page 107 of 112

10.6 Sync serial receiver and LCD display with ATtiny24
The direct receiver with a regulated OpAmp outputs a sync serial signal in a short or long
format, if so configured. This receiver here receives this sync signal and displays the re-
ceived content on an LCD. With that, time, date, weekday as well as status messages
from the receiver can be displayed, depending from the size of the attached LCD.

10.6.1 Necessary hardware

The necessary hardware is
published here with a de-
tailed description. It is pos-
sible to attach the following
LCD types to it:

• Single line, 8 charac-
ters: In the OpAm-
pReg software select
the short format, no
status messages, Dis-
play of the time as:
00:00:00

• Two lines, 16 charac-
ters: In the OpAm-
pReg software select
the long format and
short status mes-
sages, Display: Line 1
= 00:00:00 U/M/S,
Line 2 = 01.01.00 Wd E0

• Four lines, 20 characters: In the OpAmpReg software select the long format and
long status messages, make sure that cEN is equally defined in both softwares, Dis-
play: Line 1 = Time = 00:00:00 U/M/S, Line 2 = Date = 12/31/20 Wd, Line 3 =
Long DCF error messages, Line 4 = Status messages

To attach the OpAmp receiver to the tn24lcd board you need only a 6-pin parallel cable
that fits into the 6-pin male plug on the tn24lcd board.

That is all. Anything
else is done by the
software.

Page 108 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/tn24_lcd/tn24_lcd.html

10.6.2 The software

The software is written in Assembler, of course. It requires the LCD-Include-Routines to
assemble correct. The following entries have to be changed to match with your hardware:

;.equ clock = 1000000 ; Clock frequency of controller in Hz
; LCD size:
 .equ LcdLines = 1 ; Number of lines (1, 2, 4)
 .equ LcdCols = 8 ; Number of characters per line (8..24)
; LCD bus interface
 .equ LcdBits = 4 ; Bus size (4 or 8)
 ; If 4 bit bus:
 .equ Lcd4High = 1 ; Bus nibble (1=Upper, 0=Lower)
 .equ LcdWait = 0 ; Access mode (0 with busy, 1 with delay loops)
; LCD data ports
 .equ pLcdDO = PORTA ; Data output port
 .equ pLcdDD = DDRA ; Data direction port
; LCD control ports und pins
 .equ pLcdCEO = PORTB ; Control E output port
 .equ bLcdCEO = PORTB2 ; Control E output portpin
 .equ pLcdCED = DDRB ; Control E direction port
 .equ bLcdCED = DDB2 ; Control E direction portpin
 ;equ pLcdCRSO = PORTB ; Control RS output port
 .equ bLcdCRSO = PORTB0 ; Control RS output portpin
 .equ pLcdCRSD = DDRB ; Control RS direction port
 .equ bLcdCRSD = DDB0 ; Control RS direction portpin
; If LcdWait = 0:
 .equ pLcdDI = PINA ; Data input port
 .equ pLcdCRWO = PORTB ; Control RW output port
 .equ bLcdCRWO = PORTB1 ; Control RW output portpin
 .equ pLcdCRWD = DDRB ; Control RW direction port
 .equ bLcdCRWD = DDB1 ; Control RW direction portpin
; If you need binary to decimal conversion:
 ;.equ LcdDecimal = 1 ; If defined: include those routines
; If you need binary to hexadecimal conversion:
 ;.equ LcdHex = 1 ; If defined: include those routines
; If simulation in the SRAM is desired:
 ;.equ avr_sim = 1 ; 1=Simulate, 0 or undefined=Do not simulate

Further properties to be adjusted in the source code are:

• cEN: 1 provides english display format,
•

10.7 Async serial receiver and LCD display with ATmega48
The direct receiver with a regulated OpAmp outputs an async serial signal in a long for-
mat, if so desired. This receiver here reads this async signal and displays the received
content on an LCD. With that, time, date, weekday as well as status messages from the
receiver can be displayed, depending from the size of the attached LCD.

Page 109 of 112

../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_opampreg_tn25/dcf77_opampreg_tn25.html
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/lcd/lcd.inc

10.7.1 Necessary hardware

To not having to
write an async serial
receiver in assem-
bler I chose an AVR
that already has an
integrated async re-
ceiver on board.
Many AVRs have
that, I chose an AT-
mega48 for that. If
you have an AT-
mega88, you can
simply replace the
m48 by the m88,
just change the in-
clude header in the
source code.

Those who want to clock their DCF77 seconds with an XTAL, cannot use this hardware.
The ATmega48 has no complete 8-bit data bus for the LCD when enabling an external
crystal, so I decided to skip the crystal here. That makes the watch malfunctioning with
3% inaccuracy. If you want a crystal-driven device you can change to an ATmega324 like
here or you'll have to drive the LCD with a four-bit data bus.

The serial signals are received by the Mega48 on its RXD pin. Because the serial signal is
directly attached and not inverted, choose cRevert = 0 in the source code software for
the ATtiny25. This switches the TXD and CTS pins of the ATtiny25 to active high. After the
ATmega48 has absolved its initialization, he turns PD1 on, switching Clear-To-Send back
on the ATtiny25 on.

The pins PD2 and PD3 are attached to two keys. Those are for adjusting the clock to cur-
rent time even without a valid DCF77 signal coming in. Pressing key1 starts the adjust-
ment of the hours with an INT0 signal, the correct hour can be selected with the poten-
tiometer that is attached to ADC0. If correct, press key2 (INT1) and the minutes are ad-
justed. Pressing Key2 again sets the time.

The LCD is attached with its data bus to Port B, the three control inputs are on PD5 to
PD7. You can attach any LCD of any size to it, just change the number of rows and col-
umns in the source code. Of course, the size of the LCD determines what is displayed.

Calculation basics for this project are in the Libre-Office-Calc-File here.

10.8 Async serial receiver and LED display with ATmega324
The direct receiver with a regulated OpAmp outputs an async serial signal in a long for-
mat, if so desired. This receiver here reads this async signal and displays the received
content on an LCD. With that, time, date, weekday as well as status messages from the
receiver can be displayed, depending from the size of the attached LCD.

Page 110 of 112

http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_opampreg_tn25/dcf77_async_m48/dcf77_async_m48.ods
../../../../9_websites/gsc-da/html/avr-asm/avr_en/apps/dcf77_rcvr/dcf77_opampreg_tn25/dcf77_async_m324/dcf77_async_m324.html

10.8.1 The LED display of the clock

The display used here has been described here. It works with four decimal digits with 28
pieces of 10mm-LEDs, that are organized in seven segments by four LEDs each. Each seg-
ment is attached to a constant current driver. In the middle between the four digits a dou-
ble point is located with two LEDs, altogether 114 LEDs. The original works with an AT-
mega48.

10.8.2 Necessary hardware

To additionally enable adjustment of the watch via an async serial interface would have re-
sulted in large changes to the original ATmega48 design, because the original already
used RXD for a different signal. So I had to change to another controller.

After consulting the AVR selection window in avr_sim I decided to try it with a 40-pin
AT324PA, which is commercially available and cheap and has all that is needed for the
large watch:

• two crystal pins for clocking the controller with exact second pulses, so that the
watch also works without DCF77,

• an 8-bit-bus for multiplexing the seven segments and the double point,
• a 4-bit-bus for driving the anodes of the 7-segment display,
• two INT pins for the two keys,
• two ADC channels for the potentiometer and the background light sensor, and
• the UART input pin RXD0 and a single I/O pin for the CTS output.

The schematic shows how all components are connected to the ATmega324. As a gimmick
a red-green dual LED has been added that can display the state of the DCF77 receiver:

• permanently green shows synchronization with DCF77,

• permanently red signals missing synchronization with DCF77,
• blinking red shows read errors on the async interface.

Calculation basics are in the Libre-Office-Calc file here.

©2021 by http://www.avr-asm-tutorial.net

Page 111 of 112

http://www.avr-asm-tutorial.net/
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_rcvr/dcf77_opampreg_tn25/dcf77_async_m324/dcf77_async_m324.ods
http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48.html
http://www.avr-asm-tutorial.net/avr_sim/index_en.html

Page 112 of 112

	DCF77 receivers
	DCF77 how-to
	DCF77 receiver basics
	What you get here
	Overview on what is described here
	Links to other documents

	1 DCF77 cross antenna
	1.1 Mounting
	1.2 Measuring the coils
	1.2.1 Measuring results with a grid dip meter
	1.2.2 Measuring results with a CMOS oscillator

	1.3 Buffer stage
	1.4 AFC Frequency adjustment
	1.5 Properties of the cross antenna

	2 Transistorized DCF77 receiver amplifier
	2.1 Amplifier and driver for DCF77 RF
	2.2 Rectification
	2.2.1 Diode Rectifier
	2.2.2 Rectifier with an ATtiny25

	2.3 Automatic regulation
	2.4 The pass-band curve of LC filters

	3 A DCF77 receiver direct amplifier with a TCA440
	3.1 The TCA440
	3.2 Schematic for a DCF77 direct amplifier with TCA440

	4 DCF77 superhet receiver with xtal filter
	4.1 Advantages of a superhet over any other concepts
	4.2 The superhet schematic
	4.2.1 TCA440 with the internal LC oscillator circuit
	4.2.2 TCA440 with an external oscillator
	4.2.2.1 Concept using a crystal oscillator as basis
	4.2.2.2 Selecting the crystal frequency
	4.2.2.3 Rectangles to sine waves
	4.2.2.4 The schematic with a discrete crystal
	4.2.2.5 The schematic with an integrated xtal oscillator
	4.2.2.6 Software for the ATtiny25
	4.2.2.7 Fuses of the ATtiny25
	4.2.2.8 Mounting the xtal sine wave generator

	4.1.3 LC-VCO-Oscillator with ATtiny25 controller
	4.1.3.1 Design of the LC-VCO-Oscillator
	4.1.3.2 Frequency measurement and -regulation
	4.1.3.3 Programming the ATtiny25
	4.1.3.4 Connecting the LC oscillator to the TCA440
	4.1.3.5 The source code for the ATtiny25

	4.2.4 Mounting the superhet

	4.3 The xtal filter for 32.768 kHz
	4.4 Automatic control of the DCF77 signals

	5 DCF77 controller with ATtiny45
	5.1 Why assembler? Why an ATtiny45 and nothing else?
	5.2 The schematic of the ATtiny45 controller for DCF77
	5.3 Functioning
	5.3.1 Start-up phase
	5.3.2 Detection of zero/one bits and minute change
	5.3.3 Generation and properties of the PWM signals
	5.3.4 Measuring and evaluation of the AM DC signals
	5.3.5 Serial transmission

	5.4 Software
	5.5 Operation experiences

	6 DCF77 display with an ATtiny24
	6.1 Connecting the device with the receiver
	6.2 Display
	6.3 Software for the ATtiny24
	6.3.1 Reception of the serial signals
	6.3.2 Seconds and serial interface time-out
	6.3.3 Debugging option

	6.4 Assembler source code for the DCF77 display with ATtiny24

	7 DCF77 AM rectifier with ATtiny25
	7.1 How it works
	7.1.1 Hardware
	7.1.2 Duo-LED option
	7.1.3 DC Output
	7.1.4 Available resources

	7.2 Testing
	7.3 Software for the rectifier

	8 DCF77 PCB layouts
	8.1 Modules and connections
	8.1.1 The HF-RX module
	8.1.2 The Direct-Receiver modules
	8.1.3 The Superhet receiver modules
	8.1.4 The AM rectifier modules
	8.1.5 The Control- and Display-module

	8.2 Links to the PCB layouts
	8.2.1 Layouts for the modules
	8.2.2 Complete PCB layouts with combinations

	9 DCF77 Alarm clock with ATmega324
	9.1 Selecting the controller
	9.2 The hardware
	9.3 Mounting the alarm clock
	9.4 Software for the alarm clock
	9.4.1 Download of the complete final software
	9.4.2 Software for hardware testing
	9.4.2.1 Testing the crystal clock and the ISP interface
	9.4.2.2 Installation and testing of the LCD
	9.4.2.3 Testing the LEDs
	9.4.2.4 Testing the AFC and AGC signal generation
	9.4.2.5 Testing the keys
	9.4.2.6 Testing the speaker
	9.4.2.7 Testing the RF/IF rectifier
	9.4.2.8 Testing the ambient light sensor
	9.4.2.9 Testing the potentiometer
	9.4.3 Software for the alarm clock
	9.4.3.1 Date and time
	9.4.3.2 DCF77 analysis
	9.4.3.3 LCD operation
	9.4.3.4 Adjusting date, time and alarm time with the keys

	10 DCF77 AM direct receiver with gain-regulated OpAmp and ATtiny25
	10.1 Hardware of the regulated OpAmp receiver
	10.1.1 Receiver hardware schematic
	10.1.2 How the antenna circuit works
	10.1.3 How the regulated OpAmp works
	10.1.4 Serial receivers for display

	10.2 Hardware of the ATtiny25 controller
	10.2.1 Measuring the DCF77 signal
	10.2.2 Generating and filtering the AFC voltage
	10.2.3 Generation and filtering of the AGC voltage
	10.2.4 Output of results

	10.3 The software
	10.3.1 Software download
	10.3.2 Software overview
	10.3.3 The AD conversion of the input signal
	10.3.4 OC0A and OC0B adjustment: The AFC scan at start-up
	10.3.5 The AFC in normal operation
	10.4 Analysis of the DCF77 signals
	10.4.1 Conversion of the DCF77 data bits to time/date
	10.4.2 Checking the parity
	10.4.3 Conversion of the DCF77 date and time to UTC

	10.5 Serial transmission of results and status
	10.5.1 Serial transmission in sync mode
	10.5.2 Serial transmission in async mode

	10.6 Sync serial receiver and LCD display with ATtiny24
	10.6.1 Necessary hardware
	10.6.2 The software

	10.7 Async serial receiver and LCD display with ATmega48
	10.7.1 Necessary hardware

	10.8 Async serial receiver and LED display with ATmega324
	10.8.1 The LED display of the clock
	10.8.2 Necessary hardware

