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DCF77 receivers
Of course: there are cheap (but also very expensive) DCF77 receivers available (at least in 
Germany) and there is no need for home-brewing. So why built your own? Now, just be-
cause it is fun, and because you'll learn some RF basics, and as it is fine to handle RF by 
yourself (and not to end as a RF lay person while hanging on your mobile all the time). 
And if you live in some distance to Frankfurt/Germany: the commercially available re-
ceivers are so dump that you need some more amplification to get this signal and to build 
your own atomic watch for it. And what about those that operate their commercial re-
ceiver in an environment that produces lots of very-long wave signals, such as Chinese 
switching power supplies or energy saving lamps? The commercial receiver then is over-
whelmed by those signals, and does not find date and time in the air. Here you'll find re-
ceivers that are small enough to work correct even under these adverse circumstances. 

DCF77 how-to
DCF77 is a transmitter that "officially" (yes, there is a law on that) sends time and date in-
formation continuously. It transmits in the Very-Long-Wave band at 77.5 kHz. The time 
and date information is encoded into 59 bits that are send within one minute, with the 
60th bit missing (signaling that the minute is over). These bits are sent by temporarily re-
ducing the RF power of the transmitter down to 20% of its peak power for either 100 ms 
(which is a zero bit) or 200 ms duration (which is a one bit). So, all you need to do is to 

• detect amplitude drops and risings of the received RF signal, 
• to measure the duration of those, decide whether they encode a zero or a one, and 

to collect those bits, 
• to measure the duration of pauses in the signal, where RF power of DCF77 is high, 

and to detect pauses of 1.800 to 1.900 ms duration, when a minute change occurs, 
• to re-arrange the 59 bits to extract BCD encoded 

• minutes, 
• hours, 
• weekday (1 for Monday, etc., to 7), 
• day, 
• month, and 
• year. 

all for the minute that started after this long pause, and: yes, that can all be done 
with standard CMOS gates, with two hands full of integrated circuits filling a Euro 
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size board. Thanks to modern micro controllers that all fits into an 8-pin DIP IC 
nowadays. 

• displaying all this on a 1-, 2- or 4-line LCD. 

That is all it needs. If you want to do that with a PC or laptop running a modern operating 
system: forget it, you won't be able to get this modern operating system with its time-
sharing and window reporting system to count 100 or 200 ms long pulse durations. Better 
use an ATtiny to do all this and transmit the date and time via a RS232 or whatever serial 
interface to the PC or laptop. An ATtiny works with less than one percent of the clock rate 
of a PC but is fast enough to react on even shorter pulses. Modern operating systems are 
neither designed nor able to react fast enough on those events.

Unable to program AVRs? Not willing to learn assembler programming? Yes, you can do 
that all with two hands full of CMOS-ICs. The time and date bits of DCF77 are 59 bits long, 
for that you need eight 8-bit shift registers. If you skip the first 20 bits, you need ”only” 
five of those. To check the parity bits of the minutes and hours, you need two parity gen-
erators. If you want to check the parity of the 23 date bits as well, you need additionally 
three of those. If you want to display that on 7-segment digits, you'll need at least ten 4-
bit-latches-and-decoders, if you want to see the seconds and the weekdays as well: addi-
tionally three of those and an 8-bit counter. If you want to be alarmed at a certain time, 
you'll need additional counters and comparers. And if you want your watch to function cor-
rect even when DCF77 is not transmitting due to local lightning, you'll need at least ten 
additional CMOS-ICs. And, due to the current-hungry 7-segment displays, at least 500 mA 
power supply. In contrast to that: an ATtiny25 in an 8-pin-package and an ATtiny24 in a 
14-pin-package, together with a four-line LCD do that all with less than 10 mA (mainly for 
the LCD's backlight). With a small rechargeable battery of 1,200 mAh you can operate this 
for days. No: do not fall back to the Eighties, it is not worth it. Just learn how to program 
AVRs and to write assembler programs rather than investing your time and brain in boring 
CMOS wiring.

On this web page you'll find all you need to receive, detect and decode the time and date. 

DCF77 receiver basics
77.5 kHz is a bit faster than audio signals, but still is in the same range (ok, bats do not 
hear that any more). So RF of this frequency is less sensitive and does not need special RF 
transistors or high-speed opamps. So you can just amplify it with any transistor or opamp 
type, such as a 741. Ideal for a beginner in RF.

Special is only that the signals come in with a rather small voltage. Well below a standard 
dynamic  microphone with its  5 mV. Here,  at  a distance of  28 km to  Mainflingen near 
Frankfurt,  a  ferrite  antenna 
tuned  with  a  capacitor  to 
77.5 kHz  produces  a  sine 
wave  with  roughly  5 mV, 
which already can be seen on 
an analog oscilloscope. But at 
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larger distances, only a few micro-volt come from the ferrite, associated with lots of (ran-
dom or systematic) noise.

That is how the two amplitudes, in a high and a low phase, look like over time during one-
and-a-half sine waves. The information is encoded in that amplitude (amplitude-modu-
lated, AM), so we have to detect the amplitude's height to decode the information therein.

That is why we cannot use amplifiers that have no gain regulation: either we have a too 
small gain and our amplitude rectifier does not see a signal at all, or we have a too large  
gain: then we get a rectangle, which has nearly the same peak voltage on the rectifier, no 
matter if the amplitude is high or low. And our information is lost in both cases.

So, we have to regulate the gain of the amplifier (automatic gain control, AGC), so that 
the amplified signal produces enough rectified voltage in high phases, but not too much so 
that the rectifier starts clipping the amplitude in that high phase. Just enough, so that we 
detect the loss of amplitude in the low phase. And: the gain regulation has to be slowed 
down, so that it doesn't increase the gain during the low phase, which can last either 0.1 
or 0.2 seconds. The delay in regulation shall be longer than one second or longer.

Fortunately a simple ferrite rod, with some tens of windings of copper wire, and a capaci-
tor of a few nF capacity are a very good RF filter. At resonance, its resistance is extremely 
high (approx. some 100 kΩ) and its related bandwidth is rather small (a few kHz). So a 
ferrite rod is 

1. a good receiver for that kind of RF, 
2. a good collector, as it collects RF over its complete length, 
3. a very good amplifier as it increases RF voltages if in resonance (not so much the 

overall power due to the high resistance but only the voltage), and 
4. also a good selector, suppressing 50/60Hz stray voltages as well as your local short 

wave transmitter signal with a few Megawatt power. 

Do not try ferrite-free air coils, they do not have enough inductivity (or otherwise are ex-
tremely large for that low frequency).

Unfortunately ferrite rods are sensitive to directions: if your ferrite points to the wrong di-
rection, you'll get nothing but noise and nothing to derive time and date from. This web 
site also has a solution for that, see below.

As the distance to the transmitter and the direction of the rod towards DCF77 play a role, 
and also propagation issues of the VLW band might play a role, an amplifier with a fixed 
gain, e.g. in my case 1,000 would be enough, is not a good idea. It is either too high, by 
that overloading the AM rectifier stage and no amplitude drop can be detected or it is too 
low and does not produce a DC signal, if its peak voltage is below the diode's forward volt-
age of 0.2 or 0.3 V. So, a good DCF77 receiver has to have a gain regulation. That makes 
a 741 opamp or a simple transistor amplifier a very bad choice.

Gain regulation should be able to regulate the amplifier gain by at least a factor of 10 (in 
the near-field)  or  100 (in  larger distances).  And it  should be automatically follow the 
changing signal strength, making it an AGC (automatic gain control). It should not be fast 
enough for the 100 ms or 200 ms long amplitude drops, so that gain regulation would 
mask the incoming bits, but should rather be able to average the signal over a few sec-
onds. 
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If you are in a distance of several 100 km or even beyond 1,000 km, you need much more 
gain than 1,000 to get  the DCF77 signal.  If  your necessary gain is  in  the 10,000 to 
100,000 range, an issue plays a role that any amplifier of that gain has: stray signals can 
oscillate the amplifier. This is especially the case if each of your amplifier stages reverses 
the signal by 180 degrees (as usual transistor amplifiers do) and your third stage strays 
its signal back into the first stage's input: a perfect oscillator is working then. Self-oscilla-
tion is an issue, even at only 77.5 kHz and even if you regulate the gain to down below 
the oscillation point. So, the direct receiver always has a limited gain. 

As, unfortunately, your ferrite rod is a perfect receiver for those stray signals, it helps to 
do the amplification of the signal on a different frequency than that the ferrite rod is tuned 
to. Here, the superhet principle comes into play: it mixes the input frequency (77.5 kHz) 
with an oscillator frequency (in that case e. g. 110.268 kHz), filters the subtracted product 
(in that case 32.768 kHz) and amplifies this. As 32.768 kHz is far away from the ferrite 
rod's 77.5 kHz, it does not interfere with that. And: this intermediate frequency (IF) can 
be filtered by using easily available xtals (for watches), so that even 10 or 20 Hz below or 
above signals are perfectly suppressed. This also disables noise and disables interfering 
signals from power supplies and energy saving lamps. This web site shows how to do that, 
see below. 

For the beginner in RF, a short intro to resonance might be useful. A coil is a resistor for  
AC: its resistance is depending from the AC's frequency and can be calculated by the fol-
lowing equation:

ZL = 2 * Π * f * L

with Z being in Ohms (Ω), Π is 3.141592654, f in Hz and L in Henry (H). The resistance 
increases if the frequency or the inductivity increases. 

The same for capacitors, but in that case it is reversed:

ZC = 1 / 2 / Π / f / C

Z again in Ω, f again in Hz, C here in Farad (F). The resistance decreases if f or C in-
creases. 

The term 2 * Π * f is called circular frequency and abbreviated as small omega (ω). With 
that the above formulas are as follows:

ZL = ω * L

ZC = 1 / ω / C

At resonance both the inductive and capacitive resistance is equal, ZL = ZC, making

ω * L = 1 / ω / C

In case of resonance, the inductive and capacitive resistance increases with a quality fac-
tor,  depending  mainly  from the  normal  (Ohm's)  resistance  of  the  coil.  This  factor  is 
around 100 for a normal coil or 40 for a high-Ohm coil. That is why the ferrite resonant 
circuit has such a high resistance at 77.5 kHz.

Arithmetic says that you can calculate
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inductivity by L = 1 / ω2 / C

capacity by C = 1 / ω2 / L and
frequency by f = 1 / 2 / Π / √(L * C)

That is all that you need in the math section. 

What you get here

Overview on what is described here

Here  are  some descriptions  of  home-brew-able  receivers  for  DCF77.  Lots  of  different 
tastes are covered here.

A  cross antenna for DCF77 (described here), that makes reception of DCF77 indepen-
dent from directions towards Mainflingen near Frankfurt, where the transmitter is located. 
A 90° and a 45° version has been designed, built and tested. The antenna includes a FET 
stage that serves as a buffer between the high-impedance ferrite antenna and the capaci-
tor(s) that form a resonant circuit and the lower impedance of the following amplifier 
stages. To adjust the frequency of the resonant circuit exactly to DCF77's transmit signal 
on 77.5 kHz an automatic frequency control (AFC) has been added, consisting of a vari-
able capacity diode (varactor), a capacitor and a resistor. Adjusting the AFC voltage allows 
to vary resonance frequencies between 77 and 78.5 kHz (for the 90° cross antenna and 
over a larger bandwidth for the 45° cross antenna. This brings an elevated noise immunity 
and a higher RF sensitivity. 

A  direct amplifier for 
DCF77 RF with tran-
sistors  (described 
here):  amplifies  the 
77.5 kHz RF by several 
thousand-fold  to  allow 
reception in the far dis-
tance  to  the  transmit-
ter.  Works  with  stan-
dard  electronic  parts 
and does not  use spe-
cial  parts.  Two  stages 
amplify  the  weak  sig-
nal. Of course, the gain 
of the amplifier can be adjusted. This is done with diode attenuators, so that the working 
conditions  of  the  transistor  amplifiers  remain unchanged.  The diode's  currents can be 
manually adjusted or via a PWM plus a PNP buffer stage. 

As an alternative to transistorized stages a  TCA440 amplifier can be used (described 
here).  This  provides  even  more  gain.  The  oscillator  and  mixer,  also  integrated  in  a 
TCA440, are not used, only the IF amplifier stages. The gain can be easily adjusted by ap-
plying increased voltages on the respective input pin. The TCA440 has an auxiliary output 
to drive a mechanical meter for the gain (leave that open if you don't need it). While the 
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number of necessary parts is smaller than of a transistorized version, the accessibility of 
TCA440s is also smaller as the circuit is not in production any more. 

A  superhet receiver with a TCA440 (described  here): Reception and pre-amplification 
are  on  a  frequency  of  77.5 kHz,  then  mixed  with  an  oscillator  frequency  to  form a 
32.768 Hz mixer product. Either 77.5+32.768 or 77.5-32.768 kHz can be used for that. 
The  internal  oscillator  is  working  with  an  external  coil  and  capacitor  and  works  on 
110.268 kHz.  The  mixer  signal  is  then  filtered  with  an  LC  circuit  and  32.768 kHz 
crystal(s). That is fed into the IF amplifier. Its output, again filtered with a LC resonant cir-
cuit, is rectified and produces an amplitude dependent DC signal. The AGC of the IF ampli-
fier works as described above. 
In a subversion, the TCA440's oscillator input is driven with a crystal-derived sine wave 
signal of 110.294 kHz, produced by an AVR ATtiny25, which is clocked with a 15 MHz xtal 
oscillator and divides this clock by 68 and by 2. Rectangle to sine wave conversion uses a 
3-stage RC filter for the positive and negative output, which are fed into the TCA440's os-
cillator input. The box on the bottom shows this concept. 

In another subversion the oscillator signal for the TCA440 is generated by a regulated LC 
oscillator. A crystal driven ATtiny25 measures the frequency of the LC oscillator and regu-
lates the frequency by use of a PWM and two varicap diodes.

The rectification of the DCF77 signal from the direct receivers as well as of the 32 kHz IF 
from the superhet can be made with diodes. An alternative solution would be an ATtiny25 
rectifier (described here).

An ATtiny25 has anything under  control  (described  here): it measures the DC coming 
from the rectifier, derives the AFC and AGC voltages with two PWM channels and detects 
amplitude losses (zeroes and ones from DCF77. It decodes those zeroes and ones, derives 
the time information from that, detects errors in the DCF77 signals and sends all informa-
tion over a tw-wire interface to an ATtiny24.

An ATtiny24 displays all the information received from the ATtiny25 on an attached 4-line 
LCD (described here).

As a bonus application I added a direct receiver, described here, that does it all in a small 
Tiny25: to detect the amplitude of DCF77, to generate voltages that control the frequency 
of the input LC ferrite circuit as well as the gain of two operational amplifiers, to decode 
the DCF77 amplitude drops, to convert it into time and date information with extensive er-
ror detection and to send the decoded information either over a synchronized serial inter-
face or to transmit these over an asynchronous serial interface.
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For displaying the information four different opportunities are presented, that span from 
displaying the received time and/or date information

1. with an ordinary terminal program over a standard RS232 interface, or

2. to receive it in async mode and synchronize a 7-segment display, e. g. with a large 
LED display, with that, or

3. to receive it asynchronously and display it on an LCD of programmable size (single, 
double or four lines, 8/16/20/24 characters per line), or

4. to receive it synchronously and display it on an LCD with programmable size.

Links to other documents

The following additional documents can be downloaded from the website: 

• All calculation sheets in one Libre-Office spreadsheet document  here (24 sheets, 
1,36 MB). 

• All drawings in one Libre-Office draw document here (25 drawings, 108 kB).

Note that in sub-pages of the website additional Libre-Office documents are available for 
download.
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Applications of
AVR single chip controllers 
AT90S, ATtiny, ATmega and 

ATxmega

DCF77 cross 
antenna

1 DCF77 cross antenna
The German date and time standard transmitter signal of DCF77 can be received all over 
Europe, but signal strength is strongly depending from the antenna direction. To get inde-
pendent from the direction this cross antenna has been developed and tested. 

I tested two versions of the antenna. Both consist of two coils on two different ferrite rods. 
In the first version, those two ferrite rods are mounted in an angle of 90°. In the second 
version those are mounted in an angle of 45°. By angling, one of the two rods always has 
reception, no matter what angle the DCF77 transmitter has towards the antenna rods, 
even if the other rod is completely misaligned. The signal of the sum of both coils is never 
zero, the misaligned coil just does not add to the total signal. 

The second version, with 45°, has been developed because two horizontal 10 cm rods do 
not fit into many plastic casings. In small casings (e. g. with 5 cm) the first rod can be 
placed on the bottom while the second rod can be placed on the top of the casing, both 
having 45° offset to each other. The nearer the angle of both towards 90° they come, the 
smaller is the angled amplitude difference. 

That is how the sig-
nal strength varies in 
different  angles,  for 
a single rod/coil and 
for  two rods/coils  in 
90 and 45° direction. 
In  the  cases  with 
two  rods  the  recep-
tion  strength  is 
never zero but varies 
between 0.5 and 0.7 
(90°) resp. 0.92 and 
0.35 (45°). 

To test the two rods 
a little further, I have given them different windings. For the 90° version I covered 45% of 
the 10 cm ferrite rod with copper enameled wire (0.255 mm) in single layer fashion (just 
because the two rods then can be tied together in a 90° angle without too much interfer-
ence between the two coils). That meant 110 windings for each coil. In the second version 
I covered the complete rods with single-layer wire, leaving 0.5 cm on both ends uncov-
ered. That meant approximately 350 windings for each coil. 
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Tying the two coils together and angling them has interesting effects on the inductivity of 
the single coils and on their sum. In the 90° case the inductivity of the crossed coils is  
smaller than the sum of the inductivity of both, while in the 45° case their inductivity in-
creases. If, in the second case, their mounting in a larger distance (e.g. 10 cm between 
both) is chosen, this effect will be much smaller than with both ends tied together. 

1.1 Mounting
The 90° an-
tenna  (left 
picture)  is 
mounted 
like  shown. 
First the rod 
is  shrinked 
with a piece 
of  plastic 
cover to get 
some  dis-
tance  be-
tween  the  rod  and  the  wire.  The  10 cm  rod  is  then  covered  with  110  windings  of 
0.255 mm copper wire over 45% of its length and both wire ends are fixed with plastic 
tape. The two rods are then tied together with two crossed cable ties so that the angle is 
approximately 90°. The inner ends of the two coils are soldered together. 

The 45° antenna is mounted similarly but the whole rods are covered with wire (except 
5 mm on both ends). For each coil one needs approximately 13 m of copper wire. Both 
ends are fixed with a piece of shrink sleeve. Both ferrite rods/coils are mounted on a blank 
100-by-100 mm epoxy plate and fixed with cable ties. The near ends of both coils are sol-
dered together. 

1.2 Measuring the coils
The coils have been mea-
sured  with  two  different 
methods: 

1. with  a  FET  and  a 
variable  capacitor 
equipped  grid  dip 
meter, 

2. with a CMOS oscil-
lator. 

1.2.1 Measuring 
results with a grid 
dip meter

With my grid dip meter I 
installed the coil and varied the FET oscillator with the 2*365 pF variable capacitor. From 
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previous experiments with fixed inductivities a capacity of 200 pF (in full capacity) resp. 
23 pF as smallest capacity has been determined. 

The two 45° coils oscillated with 217.64 resp. with 221.75 kHz under full capacity, result-
ing in inductivities of 2.67 resp. 2.58 mH. The sum of both would then be 5.25 mH. 

1.2.2 Measuring results with a CMOS oscillator

This schematic was used to determine 
the  inductivity  in  a  different  method. 
Measuring with this resulted in signifi-
cantly larger inductivities of 3.87 resp. 
3.79 mH, which would result in a sum 
of 7,66 mH. 

Measuring  the  45°  coils  tied  together 
resulted in a significantly higher induc-
tivity:  9.58 mH.  That's  what  you  get 
from nearing the coils in an angle. 

1.3 Buffer stage

This is the schematic for 
the buffer stage (the 45° 
version).  The  antenna 
circuit is formed with the 
stacked  coils  and  a  ca-
pacitor  of  330 pF.  The 
signal goes to the gate of 
a N-FET (any N-FET type 
can be used). The drain 
and the source of the N-
FET are connected to two 
resistors of 1k (to the fil-
tered  operating  voltage 
and to ground, the HF is 
coupled with two 1nF ca-
pacitors (ZC = 2.5 kΩ) to 

the amplifier stages (symmetric output). 
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Note that the 90° version needs a larger capacitor of 2.7 nF due to the smaller inductivity 
of the coils. 

The buffer stage with the FET is necessary to protect the sensitive properties of the LC 
resonance circuit. The large coil above has an inductivity of 9.58 mH. That means that the 
coil has, at 77.5 kHz, an inductive reactance of ZL = 2 * Π * f * L of 4,66 kΩ. If the coil is 
in resonance with the capacitor, the reactance of the LC circuit is by a factor of Quality 
larger than this, the circuit has more than 466 kΩ. That means that the resonance curve is 
very narrow, suppresses nearby noise sources and the sensitivity is very high.

Hence, it would be not a good idea to attach a stage with a lower resistance to it. This 
would seriously drop the LC circuit's high sensitivity and would broaden the resonance 
curve. The FET stage does not amplify, but only keeps the high entry resistance and pro-
vides a reduction of the resistance at its output. The high quality of the LC circuit on its in-
put is protected and kept.

1.4 AFC Frequency adjustment
The resonance frequency of the cross antenna and the 330pF capacitor can differ slightly 
(temperature, iron in the near field, etc.). Therefore two varactor diodes are attached to 
the antenna circuit, both in reverse direction (anti parallel). I have used two of the three 
diodes in a TOKO KV1235Z, use of other types such as BB112 (double diode) is possible. 
The diodes should at least have 100 pF at 0.7V (medium wave types). 

Depending from the AFC voltage (0 to 5 V) half of the capacity of the regulating varactor 
lies parallel to the antenna circuit. This allows for a sensitive regulation of the resonance 
frequency and adjustment to 77.5 kHz. You can use a potentiometer, a trim resistor or a 
digital PWM to adjust that. Because the varactor diodes are operated in reverse direction, 
no current is drawn from the diodes. 

This is approximately the 
capacity of the KV1235Z 
diode versus the reverse 
voltage  applied.  As  the 
original  curve  in  the 
available  datasheets 
looks a little bit weird, I 
have interpolated it with 
a polynome (see the cal-
culation  sheet  “FET-RX” 
in  the  LibreOffice  Calc 
file.  So  do  not  expect 
this to be correct.
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This  is  the  capacity  of 
the  varactor  diode  and 
the  resonance  fre-
quency of the cross an-
tenna  versus  the  AFC 
voltage  applied.  Two 
combinations  are  con-
sidered here:

• a  large  coil  of 
9.58 mH  and  a 
small fixed cap of 
330 pF  (red 
curve),

• a small coil of 1.5 mH and a large fixed cap of 2.7 nF (violet curve). 

The range that the combination of the large coil and the small fixed cap allow is fine, but 
the small coil with the large fixed cap covers only a very small range. Note that two of 
those varicap diodes are anti-parallel, so their capacity is halved.

In this case we can apply the varicaps a little 
different to enlarge the range: we put three of 
them in parallel and reduce the fixed cap to 
2.2 nF.  The  orange  curve  in  the  diagram 
shows that the range is now comparable to 
that with the large coil.

1.5 Properties of the cross antenna
By adding two coils with only one capacitor in the antenna circuit a phenomenon occurs 
that has to be accounted for in frequency adjustment: both coils have a combined induc-
tivity as if they were one but each coil has its own additionally. This is approximately half 
of the combined inductivity and produces its own resonance. If the capacitor is larger, this 
second resonance can be reached.  In the  90° case this  second resonance cannot  be 
reached because the varactor diodes do not have enough capacity. But in the 45° case, 
with a large inductivity and a smaller capacitor, the varactor diodes can well reach this 
second resonance points. In order to not stick to this second resonance point (with its sin-
gle direction property) the voltage of the varactors should always start from +5V down-
wards, even if the signal strength is larger with the larger capacitor (e. g. when one of the 
coils is in perfect direction towards the transmitter). 

This second resonance could have been avoided if both coils get their own (larger) capaci-
tor. But that would make frequency adjustment via AFC more complicated because one 
needs two PWMs for AFC or a small fixed capacitor exactly compensating the difference of 
the inductivity of each coil. 

Practice has shown that  this  antenna is  very selective.  While  my energy saving lamp 
transmits at roughly 80 kHz, and with that strong signal confusing commercially available 
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DCF77 receivers so that they do not work in less than 50 cm distance to the lamp, the 
cross antenna is not sensible for that. Whether 

• this  has to do with the varactor diodes that allow exact resonance to 77.5 kHz 
(maladjustment to the lamp's frequency shows a much stronger signal there), or 
whether 

• the bandwidth of the LC circuit is indeed that narrow (has to be, otherwise the 
80 kHz would still come in even if adjusted to 77.5 kHz), or whether 

• commercially available DCF77 receivers have no N-FET buffer stage but couple the 
signal to a transistor, by this reducing the high resonance resistance of the LC cir-
cuit and increasing its bandwidth, or whether 

• those do not have an AFC to exactly adjust the frequency, and can well be far away 
from 77.5 kHz, 

can not be determined exactly, but this effect alone is a good argument for having a 
home-brewed receiver instead of the cheap mass ware. 

The cross antenna is very insensitive to direction changes. The amplitude drop down to 
0.35, when in maximum misalignment, is simply compensated by a small change in the 
AGC voltage that regulates the gain of the receiver. 

Because I do not own a mechanical compass (and the one in my Android mobile is a use-
less equipment here because the term "North" is a very wide field for that equipment) I 
am not able to provide exact directional data on the cross two antenna versions. Sorry for 
that. 

©2019 by http://www.avr-asm-tutorial.net
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2 Transistorized DCF77 receiver amplifier
An RF amplifier for DCF77, transmitting on a frequency of 77.5 kHz, has to 

• amplify the antenna signal by at least 10,000 fold, 
• avoid self-oscillation of the amplifier by regulating its gain (AGC), and 
• has to drive the final rectifier stage with enough RF power. 

2.1 Amplifier and driver for DCF77 RF

The  amplifier  has  two 
stages,  each  equipped 
with a usual NPN small 
signal  transistor  (you 
can  use  any  available 
type): 

1. The first stage is 
a  voltage  ampli-
fier  with  a  reso-
nant  LC  circuit 
for  77.5 kHz  in 
its  collector.  To 
reduce load influ-
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ences from the next stage on the resonant circuit, the capacitor of the LC is divided 
into a large and a small capacitor and so divided by 4.5 with that capacitive divider. 

2. The second stage is a similar voltage amplifier but with a slightly smaller inductivity 
and larger capacitors. As the next stage is not interfering the LC resonant circuit, 
no voltage division is made here.

The gain of the two stages is 
extremely  high,  due  to  the 
very high resistance of the LC 
circuit in the collector at res-
onance  (approx.  161 kΩ  in 
stage  1  and  70 kΩ in  stage 
2). And this high gain is fre-
quency-specific.  Each  stage 
amplifies  the  signal  by 
roughly 1,000-fold. 

I  also  tried  an  additional 
stage  of  a  similar  design. 
With that stage I had to reduce the gain because of self-oscillation. I tried the diode atten-
uator as well as reducing the emitter capacitors and increasing the emitter resistors: it is 
all the same, the applicable gain of stage 3 is of no use, so it does not make any sense to 
add it. 

The diode attenuator on the first and second stage input works as follows. Increasing the 
current through the diodes (red curve) reduces their resistance, which is

R = VDiode / IDiode.

At the highest current here, IDiode is (5 - 2 * 0.65) / 1 k = 3,7 mA, so the diode resistance 
is RD = 0.65 / 3.7 = 176 Ω. As both diodes are parallel to ground (the upper one direct, 
the lower one via the 100nF-capacitor) the diodes are parallel and the resistance of the 
two parallel diodes is 88 Ω. With a capacitor of 1 nF, its capacitive reactance ZC is ZC = 1 / 

2 / Π / 77500 / 1E-9 = 2,053 Ω.

The  capacitor  and  the  two 
diodes make up a resistor di-
vider that attenuates the sig-
nal to the 0.041-fold, or with 
a factor of 24.4. Both attenu-
ators reduce the gain of the 
amplifier by the 595-fold. 

The diagram shows the atten-
uation of a single stage (red 
line) and of the second stage 
(blue  line)  of  the  two-stage 
amplifier  versus  the  AGC 
voltage  applied.  The  AGC 
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voltage  reduces  the  gain of  the  two stages  smoothly  (note  that  the  PNP drive  stage 
reaches saturation at 2.8 V, so the curves are theoretical above that!).

In stage 1 the diode attenuator following adds 1 nF to the C12 capacitor. That reduces the 
resonance frequency of the LC combination slightly. This effect is calculated in the Libre-
Office spreadsheet  here. The resonance frequency shifts from 77.8 down to 77.15 kHz, 
still is within the bandwidth of DCF77 and has no negative consequences. 

The same calculation sheet calculates the influence of the emitter-base capacitor of the 
transistor, in this case the stage 2 capacity. This has positive consequences as it reduces 
the resonance frequency down from 77.95 to 77.82 kHz. Because the tolerances of the 
parts used have a much higher influence, this is rather of an academic nature.  

The signal  of DCF77 is highly amplified, the gain can be reduced by applying current 
through the diode attenuators. I use a trim resistor which drives the base of a PNP transis-
tor with 1 kΩ on its emitter (with the collector on ground) to get enough diode current. 
This stage is also required when driving the AGC with a pulse-width modulated signal from 
an AVR. This allows a fine tuning of the gain. 

In a second test configuration I attached the base of the PNP driver to a potentiometer re-
sistor of 100 kΩ, with both ends attached to the operating voltage. With the potentiometer 
the gain can be adjusted very sensitive. If you use manual adjusting, it can be recom-
mended to reduce the variability of the potentiometer with additional fixed resistors to re-
duce the sensitivity.

The design of the PNP driver stage with 1 kΩ to plus and two 1 kΩ before the two diodes 
of the attenuators, reaches saturation when the AGC exceeds 2.5 V: the diode current is 
not rising any more because the two diode pair currents exceed the driver current through 
the 1kΩ to plus. The diode current (in the diagram in green, right side scale) is then con-
stant, limiting the possible attenuation.

Because I live in 28 km distance to the DCF77 antenna and so have strong reception sig-
nals, the attenuation with the 1kΩ resistors was large enough to reduce the field strength.
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If you live even closer to Mainflingen, 
you  might  need  more  attenuation, 
reduced resistors of 470Ω and 220Ω 
are shown in the diagram.

Or, you can decide to use  this Mer-
cedes-Benz-type  driver  with  two 
opamps, which drives the diode cur-
rents in a super-linear manner (from 
0.0  V  AGC  voltage  on),  with  max. 
12 mA diode current and to achieve 
an  attenuation  of  1,514-fold  with 
that. But this is the version for the 
electronics lover only.

2.2 Rectification
The rectification can be made with a diode rectifier or an ATtiny25 controller (see chapter 
2.2.2 for more and chapter 7 for a detailed description).

2.2.1 Diode Rectifier

This here is the diode rectifier for 
the amplitude-modulated RF signal. 
Two Germanium or Schottky diodes 
rectify  and  double  the  DC  made 
from the RF, with two capacitors of 
470 nF.  The resistor  of  33 kΩ un-
loads the capacitors during the am-
plitude  drop of  the  DCF77  signal, 
with  a  half-life  time  of  approxi-
mately 10 ms. The following RC with R=10kΩ and C=470nF reduces humming of  the 
77.5kHz signal, and a clean signal, to be fed into an ADC stage of an AVR. 

The first stage decouples the diode rectifier from the second stage of the amplifier, so that 
the resonance circuit of the second stage is not overloaded by the low diode resistances. 
This stage has no amplification, it just reduces the source impedance.

Page 20 of 112



This is the produced 
DC voltage for differ-
ent AC voltages. The 
rectifier  does  not 
work  below  0.4 Vpp 
input voltage due to 
the  diodes.  But  it 
provides  enough  DC 
voltage  for  normal 
RF or IF signals. 

This  is  the  unload 
curve of the RC com-
bination  with 
C=470nF  and 
R=33kΩ.  With  t  = 
0.69*R*C = 0.01 s it 
is  steep  enough  to 
detect the 100 resp. 
200 ms long amplitude drops when DCF77 transmits a zero or a one.

In red the delayed drop on the R=10kΩ/C=470nF filter can be seen. It is slightly delayed, 
but drops down with a similar speed like the voltage on the input. 

Calculation  of  those 
curves  was  per-
formed  with  the 
OpenOffice  spread-
sheet  here.  The 
sheet  SimRectifier 
simulates  for  a  fre-
quency  of  77.5 Hz 
and  for  the  diverse 
parts of the rectifier 
and for  a selectable 
resolution.  Fields 
that require an input 
are  with  a  green 
background  color.  It 
simulates 

• the  voltages 
on the two rectifier capacitors (in columns C and D and their sum in column E, 

• the drop in amplitude with a selectable level, starting at a selectable time, and 
• the voltage on the RC filter output. 

From that simulation the ripple of the voltage on the rectifier capacitors was also calcu-
lated. It is below 0.25 mV and remains below one digit of a 10 bit ADC. Only if the capaci-
tor values down to one tenth or the reduction of the resistor down by a factor of 20 yields 
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one ADC digit. This would increase the amplitude drop speed, but would also decrease the 
voltage level.

Even though the rectifier RC does not produce humming I added the 10k/470nF RC filter. 
In practice humming was larger than simulated here, so this filter was necessary for a 
clean signal. 

The rectifier hardware and the calculation tool can also be used for smaller frequencies, 
e. g.  for  the  32.768 kHz  IF  of  a  superhet.  It  doesn't  work  with  an IF  of  455 kHz  or 
10.7 MHz, though. 

The  amplitude  drop 
when  receiving  ze-
roes  and  ones  and 
during  the  2-second 
long  missing  drop 
when  the  minute  is 
over  leads  to  a  re-
duction of  the  long-
term average of the 
signal,  when  aver-
aged over a time pe-
riod  of  longer  than 
one minute (as done 
in  an  AVR  or  in  a 
long-term RC filter). The following parameters were used in this simulation: 

• Signal DC of 
• 2 V without amplitude drop, 
• 0,4 V with amplitude drop, 

• averaging by an RC filter of 
• R=56 kΩ, 
• C=220 µF. 

with a time constant of t = 8,5 s. 

Such a RC combination would be chosen if the DCF77 signal would be used to adjust the 
gain of the RF or IF amplifier, e. g. in a TCA440 or for a diode attenuator. In those cases 
the reception of a zero or a one shall not lead to a relevant gain adjustment. 

One can see that the average voltage is at 1.85 V (approx. 93% of the 2 V on the input) 
and differs only by +/-10 mV during a zero or a one. During a minute change, the level 
change is slightly higher and around +/-25 mV. 

From that one can see that long-term averaging (via software or with an RC filter) is an 
appropriate method. 

2.2.2 Rectifier with an ATtiny25

The rectification with an ATtiny25 controller is in detail described in chapter 7. The assem-
bler software for the ATtiny25 can also be found there.
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This can directly be attached to the second stage of the amplifier and does not need an 
emitter follower like the diode rectifier, due to high resistance of the ADC3 input stage in 
the ATtiny25.

The signal of the second amplification stage is fed to the AD converter of the ATtiny25. 
This measures the amplitude of the signal with a very high sampling frequency, rectifies it 
(by subtracting 0x0200 from the 10-bit ADC result and inverting the result if negative = 
rectification), detects the maximum from a large series of measurements (256), averages 
those over 16 maxima, divides it by 2 and runs the 8-bit TC1 with that in PWM mode.

TC1 produces a pulse-width modulated signal that is averaged by a three-stage RC filter, 
that produces a stable DC voltage with a very low ripple of between 0 and 5 mV, depend-
ing from the amplitude on the ADC3 input. This DC is transferred to the decoder con-
troller's AM in that derives a) the DCF77 bits and b) the AGC and AFC signals from that.

Do not try to integrate the functions that the tn25 rectifier performs into the decoder's 
controller: the very fast ADC sampling rate eats up the complete clocking of the controller 
with 8 MHz, so that there is no time left for the complex functions of the decoder.

The Duo-LED that can be attached to the rectifier controller (red/yellow or red/green 2-
pin-Duo-LED, red anode to OC0B, resistor of 270Ω) can serve as a signal strength indica-
tor (with increasing green brightness, if signal strength is too large to regulate the ampli-
fier it turns fully green). If you do not need that you can switch this off by changing the 
software's configuration.

2.3 Automatic regulation
For  the  automatic  regulation  of  the 
frequency  (AFC)  and  of  the  gain 
(AGC) as well as for the complete de-
coding of the DCF77 signal, including 
a serial interface for transmitting the 
data  to  another  controller  that  dis-
plays date and time received, a con-
troller of the type ATtiny45 has been developed. This reads the rectified voltage, analyzes 
the voltages, derives controls and adjusts AFC and AGC via two PWM channels and, by de-
tection and checking of voltage drops, decodes the zeroes and ones received from DCF77.

The description of that TN45 controller can be found here. 
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2.4 The pass-band curve of LC filters
In order to determine the filter properties of the two LC resonance circuits in the collector 
of the amplifier stages a generator was designed and built that allows to measure those 
filters around 77.5 kHz. It produces sine waves with adjustable frequencies between 70 
and 80 kHz. The amplitude of the oscillator is 4 Vpp at an operating voltage of 5 V. 

Those  are  the  filter 
curves with different 
coupling  capacitors. 
The  maximum  of 
resonance  with  a 
330pF  capacitor  is 
not  at  79 kHz  (as 
calculated)  but  by 
5 kHz  lower  at 
74 kHz.  This  is,  on 
one  hand,  due  to 
the coupling capaci-
tor  (when  fully  in 
parallel  70.2 kHz), 
but is also due to straying effective values of L (5%) and C (10%). 

The curve is rather broad and not very steep. It covers +/-2.5 kHz for the amplitude drop 
down to half (3 dB).

When decreasing the coupling capacitor to 68 pF (with a ZC of approximately 30 kΩ) the 

resonance frequency increases. Reactance of the LC is larger than 11 kΩ at resonance. 
Due to the high bandwidth of the LC circuit it does not make much sense to adjust the two 
LC circuits for 77.5 kHz. Compared to a simple resistor in the collector, an un-adjusted LC 
circuit is  an immense advantage. Especially RF far away of the 77.5 kHz (short wave, 
90 kHz power supplies, etc.) are not amplified.

Those who need it more narrow, because their power supply, energy saving lamp or old 
valve TV transmits at 80 kHz, can use a superhet with a more narrow filter, as also de-
scribed on this web page.

This is the transistor amplifier on the breadboard. Make sure that the cross antenna is at 
least in a distance of 15 to 20 cm of the inductivities to avoid feedback and self-oscillation.
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3 A DCF77 receiver direct amplifier with a 
TCA440

Lots of parts are needed for a gain-adjustable receiver amplifier for 77.5 kHz (see here). 
So using an integrated circuit can reduce the number of necessary parts. As currently AM 
radio reception are slowly dying out, the production of such ICs is very limited. There are 
only ICs in production, that 

• include AM and FM receivers in one chip (e. g. CD2003 and many more). For DCF77 
the FM part is unnecessary and consumes current for nothing, 

• offer very primitive amplifiers without gain regulation, unusable for changing volt-
age levels (e. g. TA7642 ZN414), or that 

• are unavailable in normal electronic shops (such as the MAS6181 or the TDA1572), 
or that 

• require a large number of external capacitors to work (e. g. SA602/612). 

The way out from that dilemma is to use ICs that are not produced any more but are still 
available in specialized shops. Old fashioned AM superhet ICs fit our needs for DCF77 re-
ception perfectly. For a direct receiver concept, only the internal pre-amplifier, oscillator 
and mixer is unnecessary and has to be disabled. The integrated IF amplifier, equipped 
with a gain control input pin, can be used to amplify the 77.5 kHz directly with enough 
gain.

Here the ancient TCA440 is used. It needs only a few external components. It is still avail-
able in specialized electronic shops, search for it on the internet. 
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3.1 The TCA440
The TCA440 integrates, in its 16 pin DIP case 

1. it provides a differential amplifier on its pins 1 and 2, that can be used as a RF in-
put stage, its gain can be reduced applying positive voltages on pin 3, 

2. it receives a symmetric oscillator frequency on its pins 4 and 5 and couples it back 
on pin 6, 

3. it has an additive mixer on board, with its outputs on pins 16 and 15, 
4. integrates a gain regulated IF amplifier with symmetric inputs on its pins 12 and 13 

and its output on pin 7, 
5. has a gain amplifier stage on pin 9, that regulates the IF gain and has an output for 

attaching an instrument to display field strength on pin 10. 

The pins 14 (plus) and 8 (GND) provide the operating voltage. The IC integrates 

• 34 transistors, 
• 21 diodes, and 
• 53 resistors. 

Copying of this using discrete parts would be an extreme effort, filling a Euro sized board. 

Additional data, the internal structure and applications as medium wave receiver can be 
seen in the data-sheet by Siemens. 

3.2 Schematic for a DCF77 direct amplifier with TCA440
The  received  signal 
from  the  cross  an-
tenna,  with  frequency 
regulation  and 
buffered  with  an  N-
FET from here is sym-
metrically  applied  to 
the IF amplifier of the 
TCA440. Pre-amp, os-
cillator  and mixer  are 
switched  off  and  are 
not used here. 

The  output  of  the  IF 
amplifier  goes  to  a 
low-resistance  (ap-
prox. 2 kΩ) resonance 
circuit.  The  AM-RF  is 
then  rectified  with  a 
double  diode  rectifier 
already  described 
here. 

Frequency (of the cross antenna receiver) and gain regulation can be made using trim re-
sistors or with an ATtiny45 controller as described here.
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Note that the TCA440 has a gain of 1.0 if you leave the AGC input open. To wake-up the 
TCA440, apply a lower voltage to the AGC pin, and he wakes up and gains.

That is how the amplifier 
and  rectifier  is  mounted 
on a simple breadboard. 

©2019 by http://www.avr-asm-tutorial.net 
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Path: Home => AVR overview => Applications => DCF77 receivers => Superhet

Applications of
AVR single chip controllers 
AT90S, ATtiny, ATmega and 

ATxmega

DCF77 superhet 
32.768 kHz IF

4 DCF77 superhet receiver with xtal filter
Those who want to have the Mercedes of a DCF77 receiver, home-brew themselves a su-
perhet with a crystal filter! The DCF77 receiver RF signal (e. g. from a cross antenna) of 
77.5 kHz is 

1. amplified in a pre-amp, then 
2. mixed with an oscillator signal to form a different frequency (here: 32.768 kHz), 

which is then 
3. filtered with an LC circuit and a crystal, after that 
4. amplified in an Intermediate Frequency (IF) amplifier, its output then 
5. is again filtered with an LC circuit and rectified in a two-diode stage as shown here 

with the generated DC filtered in an RC stage, and then 
6. the DC is measured, checked and decoded in an ATtiny45 controller, with time and 

date information serially transmitted to 
7. be received, decoded and displayed on an´LCD. 

With that, you can be absolutely shure that no one besides you (and me, of course) has 
such a home-brewed Mercedes in its garage: it is unique and perfect. 

4.1 Advantages of a superhet over any other concepts
Superhets are better than direct receivers because the Intermediate Frequency (IF) can 
be filtered with a small bandwidth (here: of a few Hz). So any interferences from other 
sources (random noise, strong RF from nearby short wave transmitters, from switching 
power supplies or switched power saving lamps as well as all other electromagnetic fields 
can be completely sorted out and eliminated. So it is possible to receive the DCF77 signal 
in a very far distance and in a noisy environment, where other receivers do not work.

As the IF amplifier works on a different frequency, the IF signal can be amplified without 
getting self-oscillation. This also makes it more sensitive than direct receiver concepts. 

4.2 The superhet schematic
This is the schematic of the Mercedes.

The symmetric output signal from the cross antenna's FET buffer stage is fed into the pre-
amplifier stage of a TCA440 on its pins 1 and 2. The gain reduction of the pre-amp stage 
on pin 3 is turned off. IF you are in the absolute near-field of DCF77 (say: less than 
10 km) you can apply 1 or 2 V here to not drive the mixer stage into an overload. 
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On  the  oscil-
lator  pins  4 
and 5 the os-
cillator  signal 
of  77.5  + 
32.768  = 
110.268 kHz 
is  supplied. 
This signal ois 
either  gener-
ated in an LC 
circuit (by us-
ing  the  oscil-
lator  output 
signal  on  pin 
6,  see  here) 
or  with  an 
xtal  oscillator 
(see here). 

The  mixer 
products  are 
filtered with a LC circuit made of a fixed coil of 15 mH and a capacitor of 1.5 nF. To filter 
the only product of interest, the 32.768 kHz, one or up to three 32kHz xtals follow. The 
properties of such a crystal filter are in detail shown here. 

The output of the crystal filter is fed into one of the two symmetric input pins (pin 12) of 
the IF amplifier, with the other input on pin 13 being blocked to ground potential via a 1µF 
capacitor. 

The emitter output of the IF amplifier on pin 7 is connected with a second LC combination 
with L=100µH and two parallel capacitors of 220 nF and 15 nF. The signal is then fed into 
a 2-diode rectifier and RC filter stage to yield the amplitude as DC. This is further mea-
sured and analyzed in a controller as described here. The superhet comes in two varia-
tions: with the oscillator signal 

1. produced by a LC combination, or 
2. with a crystal oscillator and rectangle-to-sine filter. 

4.2.1 TCA440 with the internal LC oscillator circuit

If you want to use the built-in oscillator in the TCA440 
the following is necessary. Prepare an 18mm ferrite core 

with an AL value of 2,850 nH per winding2. The core can 
be trimmed with a screw or with the trim capacitor to 
110.268 kHz.  Use a frequency counter  or  the rectified 
DC to adjust. 
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An alternative to that would be to choose a 14-mm fer-
rox cube core with an AL of 250 nH/w2. The components 
change  slightly,  with  a  trimming  range  from 108.4  to 
112.0 kHz.

4.2.2 TCA440 with an external oscillator

The previous documents on this had an error, the oscillator now works fine. 

4.2.2.1 Concept using a crystal oscillator as basis

LC resonance circuits are slightly temperature sensitive, so that its frequency has to be 
adjusted from time to time. Under long term operation and with some aging of parts, this 
has some disadvantages. An alternative to the LC would be to generate the oscillator fre-
quency from a xtal-controlled base frequency, by dividing that with a fixed rate. 

Of course, there are no 110.268 or 44.732 kHz on the market. This solution here uses a 
xtal clocked AVR as a rectangle generator. 

An AVR, here an ATtiny25, is clocked by an external xtal oscillator. Its timer/counter 0 
works as a divider (in CTC mode), divides the clock frequency by a fixed rate and toggles 
the compare outputs A and B on compare match. By starting outputs A and B with differ-
ent start conditions, it  produces counter-phased rectangles. The rectangles are filtered 
with an RC network, that yields sine waves that can drive the TCA440's oscillator inputs 
with a symmetric sine wave signal. 

4.2.2.2 Selecting the crystal frequency

Digital dividers can only divide by integer values. Therefore the xtal frequency, divided by 
the divider, has to fit nearest to the desired TCA440 oscillator frequency. To find the near-
est fit I have listed all available xtals in a spreadsheet and did some calculations with 
those.

In the table the higher (110.268 - 77.5 = 32.768 kHz as well as the lower (77.5 - 44.732 
= 32.768 kHz are considered. The divider is calculated, the divider determined and the 
factually generated frequency f is as well as its absolute deviation in percent and in +/- Hz 
is listed. The table is available here as OpenOffice file. 

The table holds a second sheet, listing xtal oscillators only. There are fewer, but also some 
frequencies that are not available as discrete xtal. The output of the crystal oscillator is 
connected to the ATtiny25's XTAL1 pin. The CLKOUT fuse can, but must not be activated. 
The calculation sheet "xtal_oscillator" lists that. In this mode the ATtiny25 can be operated 
with 5 V, the reduction of the operating voltage is unnecessary. 

Please note that the divider toggles the OC0 pins, so that two toggles are necessary for 
one wave. The frequency therefore is half of the compare value (+1). 
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Xtal
(MHz)

77.5 + 32.768 = 110.268 kHz 77.5  32.768 = 44.732 kHz�

Divider
f is

(kHz)
Delta

%
Delta
(Hz)

Divider
f is

(kHz)
Delta

%
Delta
(Hz)

1.843200 8 115.200 4.47 4932.0 21 43.886 1.89 -846.3

2.000000 9 111.111 0.76 843.1 22 45.455 1.62 722.5

2.097152 10 104.858 4.91 -5410.4 23 45.590 1.92 858.3

2.457600 11 111.709 1.31 1441.1 27 45.511 1.74 779.1

2.500000 11 113.636 3.05 3368.4 28 44.643 0.20 -89.1

3.000000 14 107.143 2.83 -3125.1 34 44.118 1.37 -614.4

3.072000 14 109.714 0.50 -553.7 34 45.176 0.99 444.5

3.276800 15 109.227 0.94 -1041.3 37 44.281 1.01 -450.9

3.579545 16 111.861 1.44 1592.8 40 44.744 0.03 12.3

3.686400 17 108.424 1.67 -1844.5 41 44.956 0.50 224.1

3.686411 17 108.424 1.67 -1844.1 41 44.956 0.50 224.2

3.932160 18 109.227 0.94 -1041.3 44 44.684 0.11 -48.4

4.000000 18 111.111 0.76 843.1 45 44.444 0.64 -287.6

4.096000 19 107.789 2.25 -2478.5 46 44.522 0.47 -210.3

4.194304 19 110.376 0.10 108.4 47 44.620 0.25 -111.7

4.433619 20 110.840 0.52 572.5 50 44.336 0.88 -395.8

4.915200 22 111.709 1.31 1441.1 55 44.684 0.11 -48.4

5.000000 23 108.696 1.43 -1572.3 56 44.643 0.20 -89.1

5.068800 23 110.191 0.07 -76.7 57 44.463 0.60 -268.8

5.120000 23 111.304 0.94 1036.3 57 44.912 0.40 180.3

5.200000 24 108.333 1.75 -1934.7 58 44.828 0.21 95.6

6.000000 27 111.111 0.76 843.1 67 44.776 0.10 44.1

6.000000 27 111.111 0.76 843.1 67 44.776 0.10 44.1

6.144000 28 109.714 0.50 -553.7 69 44.522 0.47 -210.3

6.400000 29 110.345 0.07 76.8 72 44.444 0.64 -287.6

6.553600 30 109.227 0.94 -1041.3 73 44.888 0.35 155.7

7.372800 33 111.709 1.31 1441.1 82 44.956 0.50 224.1

8.000000 36 111.111 0.76 843.1 89 44.944 0.47 211.8

8.000000 36 111.111 0.76 843.1 89 44.944 0.47 211.8

8.867238 40 110.840 0.52 572.5 99 44.784 0.12 52.0

9.216000 42 109.714 0.50 -553.7 103 44.738 0.01 5.9

9.830400 45 109.227 0.94 -1041.3 110 44.684 0.11 -48.4

10.000000 45 111.111 0.76 843.1 112 44.643 0.20 -89.1

10.000000 45 111.111 0.76 843.1 112 44.643 0.20 -89.1

10.240000 46 111.304 0.94 1036.3 114 44.912 0.40 180.3

10.700000 49 109.184 0.98 -1084.3 120 44.583 0.33 -148.7

11.000000 50 110.000 0.24 -268.0 123 44.715 0.04 -16.6

11.059200 50 110.592 0.29 324.0 124 44.594 0.31 -138.5

12.000000 54 111.111 0.76 843.1 134 44.776 0.10 44.1

12.000000 54 111.111 0.76 843.1 134 44.776 0.10 44.1

12.288000 56 109.714 0.50 -553.7 137 44.847 0.26 114.7

12.750000 58 109.914 0.32 -354.2 143 44.580 0.34 -151.6

14.000000 63 111.111 0.76 843.1 156 44.872 0.31 139.8

14.318000 65 110.138 0.12 -129.5 160 44.744 0.03 11.7

14.745600 67 110.042 0.21 -226.2 165 44.684 0.11 -48.4

15.000000 68 110.294 0.02 26.1 168 44.643 0.20 -89.1
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Xtal
(MHz)

77.5 + 32.768 = 110.268 kHz 77.5  32.768 = 44.732 kHz�

Divider
f is

(kHz)
Delta

%
Delta
(Hz)

Divider
f is

(kHz)
Delta

%
Delta
(Hz)

16.000000 73 109.589 0.62 -679.0 179 44.693 0.09 -39.3

18.000000 82 109.756 0.46 -511.9 201 44.776 0.10 44.1

18.432000 84 109.714 0.50 -553.7 206 44.738 0.01 5.9

20.000000 91 109.890 0.34 -377.9 224 44.643 0.20 -89.1

When  mixing  the  77.5 kHz  input  signal  with  the  higher  frequency  (+32.768  = 
110.268 kHz) the 15 MHz xtal has the smallest deviation (0.02%, +26.1 Hz). The crystals 
5.0688 and 6.4 MHz deviate by 0.07% or 77 Hz and the xtal 4.194304 MHz by 0.1% or 
108 Hz.  When  mixing  with  the  lower  frequency  (77.5  -  32.768  =  44.732 kHz)  the 
9.216 MHz- crystal fits best, with 0.01% or 5.9 Hz deviation.

When mixing with 44.732 kHz the first harmonic (89.46 Hz) is in the wider range of the 
input frequency. Therefore interferences cannot be excluded, therefore the 15 MHz xtal 
was chosen. This deviates by 26.1 Hz upwards. 

4.2.2.3 Rectangles to sine waves

Any ATtiny has an 8-bit counter/timer with OC0A and OC0B output. The two pins can gen-
erate a symmetric output signal: OC0B generates the opposite signal by starting with a 
high instead of a low port-bit. So, the oscillator signal can be fed symmetrically to the os-
cillator input of the TCA440.

On both outputs, OC0A and OC0B, rectangular signals are made. Using those rectangles 
for mixing would have adverse consequences, as rectangles consist of all uneven harmon-
ics of the base frequency. It is better if those harmonics are filtered off by use of a three 
stage RC network. 

The calculation spreadsheet OpenOffice file here has a sheet named "Oscillator_coupling", 
where I played with different RC combinations. To have a large-enough signal the filter 
should not damp the base frequency too much, but the third (and beyond) harmonic. 

To limit the number of components three RC filter stages have been combined. Finally I 
selected a combination of 1kΩ and 1nF. The loss of amplitude is limited and the harmonics 
are well suppressed with that. 

This displays the filter effect of 
the three stages, as calculated 
with the spreadsheet. 

The  first  stage  (V(C1),  blue 
curve)  still  is  nearly  fully 
reaching the operating voltage 
limits.  In  the  second  stage 
(V(C2), the red curve) the am-
plitude  swing  is  smaller  and 
the  form is  nearer  to  a  sine 
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wave. In the third stage (V(C3), green curve) the amplitude loss is lower and the wave is 
a nearly perfect sine.

Displayed  above  is 
only one signal, the 
second  is  reversed, 
as  can  be  seen  in 
this picture. This in-
cludes, in green and 
on  the  right  side 
scale,  the  operating 
supply  currents 
through  the  PWM 
output  pins  during 
these phases. These 
are roughly 3.2 mA, 
but  reach  slightly 
above 8 mA in the peaks. 

With that signal mixing can be made. 

4.2.2.4 The schematic with a discrete crystal

The  schematic  is  rather  simple:  the  timer 
outputs  OC0A  and  OC0B  generate  the  re-
versely clocked rectangle of 110.294 kHz, to 
be filtered in three RC stages. The oscillator 
inputs on pin 4 and 5 of the TCA440 receive 
that signal.

The xtal of 15 MHz is connected to the XTAL 
inputs,  each  with  a  capacitor  of  18 pF  to 
GND.

Page 34 of 112



4.2.2.5 The schematic with an integrated xtal oscillator

This  is  the  schematic  using  an  integrated 
crystal oscillator. That works at 5 V operating 
voltage and does not have any other limita-
tions like above described. Even though this 
type of xtal oscillators produce a horrible rec-
tangular  signal  (anything else  than a steap 
up and down), it works perfect with an AT-
tiny25.

These are the two sine waves of the two gen-
erated signals. Looks clean. 

4.2.2.6 Software for the ATtiny25

The software for the ATtiny25 consists of a few lines assembler: 

1. The two output pins OC0A and OC0B are configured as outputs. 
2. The port register of OC0A is cleared, the one for OC0B is set to one (reversed sig-

nal)./li> 
3. Both compare values are set to the divider factor (divider minus 1). 
4. In the control port TCCR0A of timer TC0 the CTC mode is set and both output pins 

are defined to toggle on compare match. 
5. In control port TCCR0B the timer is started with a prescaler value of 1. 
6. The sleep mode of the controller is set to idle mode, the SLEEP instruction is exe-

cuted and the controller is not needed any further. 

The source code is listed here and can be downloaded in assembler format here. 

;
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; *********************************
; * Xtal oscillator for TCA440    *
; * 15 MHz ==> (77.5+32.768 kHz)  *
; * (C)2019 by DG4FAC             *
; *********************************
;
.nolist
.include "tn25def.inc" ; Define device ATtiny25
.list
;
; **********************************
;     H A R D W A R E
; **********************************
;
; Device: ATtiny25, Package: 8-pin-PDIP_SOIC
;
;            _________
;         1 /         |8
; RESET o--|RESET  VCC|--o +5 V
; XTAL1 o--|PB3    PB2|--o
; XTAL2 o--|PB4    PB1|--o Osc out -
;   0 V o--|GND    PB0|--o Osc out +
;         4|__________|5
;
; **********************************
;   F I X E D   C O N S T A N T S
; **********************************
;
.equ clock = 15000000 ; 15 MHz
.equ fosc = 77500+32768 ; Added
.equ divider = (clock+fosc)/(fosc*2)
.equ cCtc = divider - 1 ; CTC value
;
; **********************************
;        R E G I S T E R S
; **********************************
;
.def rmp = R16 ; Multipurpose register
;
; **********************************
;  M A I N   P R O G R A M   I N I T
; **********************************
;
.cseg
.org 000000
;
Main:
  sbi DDRB,DDB0 ; PB0 direction output
  cbi PORTB,PORTB0 ; Clear OC0A output
  sbi DDRB,DDB1 ; PB1 direction output
  sbi PORTB,PORTB1 ; Set OC0B output 
  ldi rmp,cCtc ; Write CTC value
  out OCR0A,rmp ; to compare register A
  out OCR0B,rmp ; and B
  ldi rmp,(1<<WGM01)|(1<<COM0A0)|(1<<COM0B0) ; CTC mode, toggle OC0A
  out TCCR0A,rmp ; in TC0 control port A
  ldi rmp,(1<<CS00) ; Prescaler = 1
  out TCCR0B,rmp ; in TC0 control port B
  ldi rmp,1<<SE ; Sleep enable, idle mode
  out MCUCR,rmp
Loop:
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  sleep ; Go to sleep
  rjmp loop
;
; End of source code

4.2.2.7 Fuses of the ATtiny25

Prior to or after programming the flash the fuses of the ATtiny25 have to be set to work 
with the external xtal or xtal oscillator. The following fuses have to be set with a discrete 
crystal: 

1. CLKDIV8 has to be disabled. 
2. The clock frequency has to be set to an external oscillator of more than 8 MHz.

4.2.2.8 Mounting the xtal sine wave generator

This is the sine wave generator on 
a breadboard, here with a discrete 
crystal. The six capacitors right to 
the  ATtiny25  form  the  three  RC 
networks for sine wave filtering. 

This  is  the  version  with  the  inte-
grated xtal oscillator. 
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4.1.3 LC-VCO-Oscillator with ATtiny25 controller

The  mixer  frequency  for  the  DCF77 superhet  with  a  TCA440  has  to  work  exactly  at 
77.5+32.768 = 110.268 kHz, with deviations of only a few Hz. To achieve this with an LC 
oscillator, its frequency has to be measured exactly and, in case it differs by more than 
+/-5 Hz, it has to be re-adjusted. This can be done with an ATtiny25. 

4.1.3.1 Design of the LC-VCO-Oscillator

Firstly,  building  an  LC  oscillator  is  a 
simple task: an appropriate coil L and 
a  convenient  capacitor  C  has  to  be 
brought to oscillate. This requires one 
FET and generates a nice sine wave.

That is how such a simple LC oscillator 
looks like. It works as follows. 

Depending from the capacitive voltage 
divider  with  the  two capacitors  from 
gate to source and from source to ground the FET produces a nice sine wave on the drain. 
On the source pin, the sine wave is rather distorted, and, if the divider ratio is changed a 
little bit, also the drain sine wave is rather distorted. The FET goes into saturation and dis-
torts the clean sine wave. That comes from the large amplitude on the gate, which dis-
turbs the function of the varactor diodes. 

This has the disadvantage that the frequency regulation with the varactor diodes does not 
work good enough and is very far from predictable, even though those are reversed dou-
ble diodes. 

Conclusion: impracticable for a reliable operation. 

To  achieve 
an  orderly 
operation, 
the  ampli-
tude  of  the 
LC circuit has 
to be kept as 
low as possi-
ble.  In  this 
design,  the 
amplitude  is 
limited  by 
two  Germa-
nium  or 
Schottky 
diodes on the LC circuit, that limit the amplitude at +/-0.2 V. The FET does not amplify in 
this design, an additional inverting amplifier follows to feedback enough HF to allow oscil-
lation for which the inversion is necessary. 
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4.1.3.2 Frequency measurement and -regulation

To measure the frequency and to regulate the voltage of the varactor diodes for a constant 
frequency of 110,268+/-5 Hz an ATtiny25 follows. The controller is clocked with an 8 MHz 
crystal oscillator, the internal RC oscillator is not exact enough for that task. 

The timer/counter TC0 in the ATtiny25 generates the measuring time clock: the pulses are 
counted for exactly 0.5 seconds long. The 0.5 seconds are achieved by dividing the con-
troller clock of 8 MHz 

1. by 256 in the prescaler, and 
2. by 125 in the counter in CTC mode, and 
3. by 125 in a register. 

As the analog comparer is used to detect 
pulses, each sine wave produces two ana-
log comparer changes, so the 24-bit wide 
frequency  counter  registers  directly  hold 
the frequency in Hz. 

If this is by more than 5 Hz smaller, the 
PWM  value  of  the  8-bit  counter  TC1  in 
OCR1B is increased by one. That increases 
the PWM output voltage after the RC filter 
by  5V/256  =  19.5 mV.  This  increasing 
voltage decreases the capacity of the var-
actor diode by approximately 0.02 pF and 
increases the LC frequency accordingly. 

If the measured frequency exceeds 110,268 Hz by more than 5 Hz, the OC1B value is de-
creased by one, the smaller voltage on the varactor diodes increases their capacity and 
lowers the frequency of the LC accordingly. By that the oscillator frequency is kept within 
that narrow bandwidth. 

To signal adjustments made and the correctness of the frequency two LEDs (or one double 
LED red/green) are build in. The yellow LED signals that the frequency is too small, the 
red signals exceeding frequency. If the oscillator works correct, both LEDs are switched 
off. If you do not need that and your oscillator works correct, just remove the LED and its 
current-limiting resistor. 

This is the overall schematic of the frequency regulated oscillator. 
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4.1.3.3 Programming the ATtiny25

The program for the ATtiny25 is written in Assembler. The source code can be downloaded 
as assembler source text here and can be viewed in the next chapter.

The source code consists of the following functional parts: 

1. Adjusting the hardware: 
• initiating the stack for interrupt handling, 
• initiating the LED output pin, 
• starting the timer/counter TC1 as asynchronous PWM (with 100µs wait time 

for PLL synchronization), with OC1B as output pin and with 255 in compare B 
(+5 V on the output,), 

• starting the timer/counter 0 as gate timer for frequency measurement, with 
interrupt enable, 

• starting the analog comparer for detecting edges on the input, with interrupt 
enable, and 

• enabling the interrupt flag in the status register. 
2. The two interrupt routines 

• for frequency measurement via analog comparer: an 8-bit register counts 
the interrupts, on overflow an additional 16-bit counter is increased, 

• for the gate time of the frequency measurement: a divider register, starting 
with 125, is decreased, it it reaches zero 

• the register divider is restartet with 125, 
• the current 24-bit counter state is copied to three other registers, and 
• the 24-bit counter registers are cleared. 

3. The comparison with the lower and upper limit of the target frequency: 
• Comparing the copied 24-bit counter with the smaller frequency limit: if the 

measured frequency is smaller the PWM frequency is increased (if not al-
ready at 255) and the yellow LED is switched on by setting its data direction 
bit and clearing the output bit, 

• Comparing the copied 24-bit counter with the higher frequency limit: if the 
frequency is larger than that, the PWM value is decreased (if not already 
smaller than the lower limit) and the red LED is switched on by setting its di-
rection- and port-bit, 

• if both cases are not true, the LED is switched off by clearing its direction bit.

 

For both interrupt service routines their duration has been added in clock cycles. 

The analog comparer interrupt  occurs every 4.5 µs,  so  after  9 µs one interrupt  event 
would be missing causing a difference of 1 Hz. That is the case if the TC0 interrupt is 
longer than 72 clock cycles. 

An interrupt loss of the TC0 gate timer can only occur after 512 clock cycles. 

Both interrupt service routines are fast enough to not interfere with each others. 
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The  whole  program  has 
137 words  and  fits  very  well 
into  the  flash  memory  of  the 
ATtiny25. Do no forget, prior to 
or  after  programming  the 
flash, to change the oscillator 
fuse of the ATtiny25, otherwise 
it would work with only 1 MHz. 

4.1.3.4 Connecting the LC 
oscillator to the TCA440

The output of the LC oscillator 
on the collector of the BC547 is 
coupled to the TCA440's oscil-
lator  input on pin 4 via  a  ca-
pacitor of 1 nF. The differential 
input on pin 5 of the TCA440 is 
deactivated with a 1 or 10 nF 
capacitor to ground, therefore 
the  oscillator  input  is  unsym-
metrical and is made symmet-
rical only by the emitter resis-
tor  in  the  TCA440's  oscillator 
input stage.

4.1.3.5 The source code for the ATtiny25

This is the assembler source code for the LC-VCO's ATtiny25. The original source code in 
assembler format is here.

;
; *********************************
; * LC Oscillator with frequency  *
; * regulation via PWM&varicap    *
; * (C)2019 avr-asm-tutorial.net  *
; *********************************
;
.nolist
.include "tn25def.inc" ; Define device ATtiny25
.list
;
; **********************************
;  D E B U G G I N G   S W I T C H
; **********************************
;
.equ Yes = 1 ; Set debug on
.equ No = 0 ; Set debug off
;
; Do not compare, blink in 500 ms
.equ debug_blink500ms = No ; Yes = blink
;
; Blink on measuring on analog compare int
;   Red and green LED blink very fast if comparer
;   int occurs, counting is disabled
.equ debug_blinkaci = No ; Yes = blink
;
; **********************************
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;        H A R D W A R E
; **********************************
;
; Device: ATtiny25, Package: 8-pin-PDIP_SOIC
;               _________
;            1 /         |8
;    RESET o--|RESET  VCC|--o +5V
; Xtal osc o--|CLKI   PB2|--o SCK/LED
; PWM out  o--|OC1B   PB1|--o MISO/AIN1
;       0V o--|GND    PB0|--o MOSI/AIN0
;           4 |__________|5
;
; **********************************
;  P O R T S   A N D   P I N S
; **********************************
;
.equ pPwmD = PORTB ; PWM direction port
.equ bPwmD = DDB4 ; PWM direction port pin
.equ pLedO = PORTB ; LED output port
.equ pLedD = DDRB ; LED direction port
.equ bLedO = PORTB2 ; LED output port pin
.equ bLedD = DDB2 ; LED direction port pin
.equ pLedI = PINB ; LED blinking port
.equ bLedI = PINB2 ; LED blinking port pin
;
; **********************************
;   A D J U S T A B L E   C O N S T
; **********************************
;
; Clock rate of external crystal oscillator
.equ clock=8000000 ; Define clock frequency
.equ cOscFreq = 77500 + 32768 ; Frequency of the LC oscillator, Hz
.equ cOscTol = 5 ; Frequency tolerance +/-, Hz
.equ cMinVolt = 2000 ; Minimum voltage of PWM, mV
;
; Use sheet clock in dcf77_lcosc_tn25.ods for the following
.equ cGateTime = 500 ; Gate time for frequency measurement in ms
.equ cPresc = 256 ; Prescaler (from spreadsheet)
.equ cCtcDiv = 125 ; CtcDivider (from spreadsheet)
;
; **********************************
;  F I X  &  D E R I V.  C O N S T
; **********************************
;
; Check clock
.set cClockCorrect = clock==4000000
.set cClockCorrect = cClockCorrect || (clock==4194304)
.set cClockCorrect = cClockCorrect || (clock==4915200)
.set cClockCorrect = cClockCorrect || (clock==5120000)
.set cClockCorrect = cClockCorrect || (clock==6553600)
.set cClockCorrect = cClockCorrect || (clock==7372800)
.set cClockCorrect = cClockCorrect || (clock==8000000)
.set cClockCorrect = cClockCorrect || (clock==16000000)
.if cClockCorrect
  .message "Clock is correct"
  .else
  .error "Incorrect clock setting!"
  .endif
;
; Define frequency measurement constants
.equ cTc0Clk = clock / cPresc ; Define prescaler from clock
.equ cDiv = cTc0Clk / cCtcDiv / 2 ; Register divider
.if cDiv > 256
  .error "cDiv is too large!"
  .endif
.if cCtcDiv == 256
  .equ cCtcCmp = 0
  .else
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  .equ cCtcCmp = cCtcDiv-1
  .endif
.equ cDelta = cDiv*(cCtcCmp+1)*cPresc ; Clock calculated
.if cDelta != clock
  .message "Clock divider has division rest, inaccurate second"
  .endif
.equ cMeasFreq = 1000 / cGateTime ; Measuring frequency
.if cMeasFreq < 1
  .error "Measuring gate time too long"
  .endif
;
; Oscillator constants
.equ cOscLow = cOscFreq - cOscTol ; Smallest tolerable frequency
.equ cOscMax = 2*cOscTol + 1 ; Largest tolerable frequency
;
; Minimum voltage of PWM
.equ cMinPwm = (cMinVolt * 256) / 5000 ; Minimum PWM value
;
; **********************************
;       R E G I S T E R S
; **********************************
;
; free: R0 to R14
.def rSreg = R15 ; Save/Restore status port
.def rmp = R16 ; Define multipurpose register
; free: R17 to R29
.def rFlag = R17 ; Flag register
  .equ bOver = 0 ; Measuring cycle is over flag
; free: R18
.def rDiv = R19 ; Register divider
.def rFrq0 = R20 ; Measured frequency result, byte 1
.def rFrq1 = R21 ; dto., byte 2
.def rFrq2 = R22 ; dto., byte 3
.def rCnt0 = R23 ; LSB of 24 bit counter
.def rCnt1 = R24 ; HSB, used as 16 bit counter
.def rCnt2 = R25 ; MSB of 16 bit counter
; free: R26 to R31
;
; **********************************
;           S R A M
; **********************************
;
; No SRAM used
;
; **********************************
;         C O D E
; **********************************
;
.cseg
.org 000000
;
; **********************************
; R E S E T  &  I N T - V E C T O R S
; **********************************
        rjmp Main ; Reset vector
        reti ; INT0
        reti ; PCI0
        reti ; OC1A
        reti ; OVF1
        reti ; OVF0
        reti ; ERDY
        rjmp AciIsr ; ACI
        reti ; ADCC
        reti ; OC1B
        rjmp Oc0AIsr ; OC0A
        reti ; OC0B
        reti ; WDT
        reti ; USI_START
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        reti ; USI_OVF
;
; **********************************
;  I N T - S E R V I C E   R O U T .
; **********************************
;
; Counts changes of the analog comparer
;   Occurs every 4.5344 us at 110.268 kHz
AciIsr: ; 7 clocks for int and vector jump
  .if debug_blinkaci == Yes
    sbi pLedI,bLedI ; Blink LED
        reti
    .endif
  in rSreg,SREG ; Save SREG, +1 = 8
  inc rCnt0 ; Count LSB, +1 = 9
  brne AciIsr1 ; +1/2 = 10/11
  adiw rCnt1,1 ; Count HSB/MSB, +2 = 12
AciIsr1: ; 11/12 clocks
  out SREG,rSreg ; Restore SREG, +1 = 12/13
  reti ; +4 = 16/17
; Maximum 17 clock cycles
;   17 clock cycles in 4.5344 us = 4 MHz min.
;
; 2 Hz counter interrupt service routine
;   counts for 0.5 seconds and reads
;   counting result
Oc0AIsr: ; 7 clocks for int and vector jump
  in rSreg,SREG ; Save SREG, +1 = 8
  dec rDiv ; Decrease divider, +1 = 9
  brne Oc0AIsr1 ; Not yet zero, +1/2 = 10/11
  sbr rFlag,1<<bOver ; Set bOver flag, +1 = 11
  ldi rDiv,cDiv ; Restart cDiv, +1 = 12
  mov rFrq0,rCnt0 ; Copy counter, +1 = 13
  mov rFrq1,rCnt1 ; +1 = 14
  mov rFrq2,rCnt2 ; +1 = 15
  clr rCnt0 ; Clear counter, +1 = 16
  clr rCnt1 ; +1 = 17
  clr rCnt2 ; +1 = 18
Oc0AIsr1: ; 11/18 clock cycles
  out SREG,rSreg ; Restore SREG, +1 = 12/19
  reti ; +4 = 16/23
;
; **********************************
;  M A I N   P R O G R A M   I N I T
; **********************************
;
Main:
  ldi rmp,Low(RAMEND)
  out SPL,rmp ; Init LSB stack pointer
  ; Init I/O ports
  sbi pLedD,bLedD ; Turn LED output on
  sbi pLedO,bLedO ; Turn red LED on
  ; Start TC1 as async PWM
  sbi pPwmD,bPwmD ; Set OC1B as output
  ldi rmp,255 ; Start with the highest PWM stage
  out OCR1B,rmp ; in compare port B
  ldi rmp,255 ; End value for PWM, 8-Bit PWM
  out OCR1C,rmp ; in output compare register C
  ldi rmp,(1<<PLLE)|(1<<LSM) ; Enable PLL in low speed mode
  out PLLCSR,rmp ; in PLL control register
  ; Wait for 100 microseconds
  ;   n = 2+4*(z16-1) + 3
  ;   n = 2+4*z16-4+3 = 4*z+1
  ;   4*z16 = n-1
  ;   z16 = (n-1)/4
  ;   n @ 8MHz = 800
  .equ z16 = (clock/10000+2)/4
  ldi rCnt2,High(z16) ; Wait for 100 us, MSB
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  ldi rCnt1,Low(z16) ; dto., LSB
PllWait:
  sbiw rCnt1,1 ; Count down
  brne PllWait ; Wait further
  ldi rmp,(1<<PLLE)|(1<<LSM)|(1<<PCKE) ; and PCK
  out PLLCSR,rmp ; in PLL control register
  ldi rmp,(1<<PWM1B)|(1<<COM1B1) ; PWM B enabled, High to low
  out GTCCR,rmp ; in general timer control register
  ldi rmp,(1<<PWM1A)|(1<<CS12) ; PWM A, High/Low, Prescaler=8
  out TCCR1,rmp ; in TC1 control register
  ; Start TC0 as gate timer
  ldi rDiv,cDiv ; Start software divider
  ldi rmp,cCtcCmp ; Set compare A value
  out OCR0A,rmp ; in compare A
  ldi rmp,1<<WGM01 ; Set CTC mode 3
  out TCCR0A,rmp ; in TC0 control port
  clr rmp
  .if (cPresc == 1) || (cPresc == 64) || (cPresc == 1024)
    sbr rmp,1<<CS00
    .endif
  .if (cPresc == 8) || (cPresc == 64)
    sbr rmp,1<<CS01
    .endif
  .if (cPresc == 256) || (cPresc == 1024)
    sbr rmp,1<<CS02
    .endif
  out TCCR0B,rmp ; to TC0 control port B
  ldi rmp,1<<OCIE0A ; Enable interrupt on compare A
  out TIMSK,rmp ; in timer int mask
; Sleep mode idle
  ldi rmp,1<<SE ; Sleep enable
  out MCUCR,rmp ; in microcontroller control port
  ; Init analog comparer as frequency input
  ldi rmp,(1<<AIN1D)|(1<<AIN0D) ; Disable digital inputs
  out DIDR0,rmp ; in analog disable port register
  ldi rmp,1<<ACIE ; Enable analog comparator interrupts
  out ACSR,rmp ; in analog comparer status register
;
; Enable interrupts
        sei ; Enable interrupts
;
; **********************************
;    P R O G R A M   L O O P
; **********************************
;
Loop:
  sleep ; Go to sleep
  nop ; Delay on wake-up
  sbrc rFlag,bOver ; bOver flag clear?
  rcall Measured ; Frequency measurement
  rjmp Loop
;
; Frequency measurement complete
Measured:
  cbr rFlag,1<<bOver ; Clear flag
.if debug_blink500ms == Yes
  sbi pLedI,bLedI
  ret
  .endif
  ldi rmp,Byte1(cOscFreq) ; Byte 1 of cOscLow
  sub rFrq0,rmp ; Subtract measured frequency, LSB
  ldi rmp,Byte2(cOscFreq) ; Byte 2 of cOscLow
  sbc rFrq1,rmp ; dto., HSB
  ldi rmp,Byte3(cOscFreq) ; Byte 3 of cOscLow
  sbc rFrq2,rmp ; dto., MSB
  brcs MeasuredLow ; Frequency too small, increase
  ldi rmp,Byte1(cOscMax) ; Byte 1 of upper bound
  sub rFrq0,rmp ; Subtract upper bound, LSB
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  ldi rmp,Byte2(cOscMax) ; Byte 2 of upper bound
  sbc rFrq1,rmp ; Subtract upper bound, HSB
  ldi rmp,Byte3(cOscMax) ; Byte 3 of upper bound
  sbc rFrq2,rmp ; Subtract upper bound, MSB
  brcc MeasuredHigh ; Frequency too high, decrease
  cbi pLedD,bLedD ; LED off
  ret
MeasuredLow:
  ; Measured frequency too low, increase
  in rmp,OCR1B ; Read compare value
  inc rmp ; Increase compare value
  brne MeasuredSetPwm ; Not the max. value, set PWM
  dec rmp ; Decrease again
  cbi pLedO,bLedO ; LED to yellow
  rjmp MeasuredSetPwm
MeasuredHigh:
  ; Measured frequency too high, decrease
  in rmp,OCR1B ; Read compare value
  dec rmp ; Decrease
  cpi rmp,cMinPwm ; Smaller than minimum PWM
  brcc MeasuredSetPwm ; Not smaller than min., set PWM
  inc rmp ; Increase again
  sbi pLedO,bLedO ; LED to red
MeasuredSetPwm:
  out OCR1B,rmp ; Write new value to TC1 compare B
  sbi pLedD,bLedD ; LED pin as output
  ret
;
; End of source code
;
Copyright:
.db "(C)2019 by Gerhard Schmidt",0,0
.db "C(2)10 9ybG reahdrS hcimtd",0,0

4.2.4 Mounting the superhet

That is how the capacitor and xtal grave looks alike on a breadboard, here with a LC oscil-
lator.

To the left the buffer stage with the FET can 
be seen (the antenna can not be seen). The 
frequency  of  the  input  stage  can  be  ad-
justed with the left trim resistor. Then the 
TCA440  with  the  oscillator  coils  follow. 
Above  to  the  right  the  three  tiny  crystals 
and  the  1µF  grave  can  be  seen.  On  the 
lower  part  the  three  470 µF  capacitors  of 
the rectifier can be seen. The trim resistor 
to the right regulates the gain of the IF am-
plifier. 

4.3 The xtal filter for 32.768 kHz
To  measure  the  filter  properties  of 
32.768kHz crystals, one can use this 
oscillator. It generates a 32kHz sine 
wave signal with an adjustable fre-
quency.  The  adjustment  is  made 
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with Medium Wave varactor diodes, for which a BB212 or a variable capacitor for medium 
wave can also be used. 

The crystal is fed with the low-resistance signal output of the sine wave generator and has 
an output resistor of 1kΩ. 

This is the resulting pass-band curve. It is less than 10 Hz wide, especially the falling edge 
is rather steep.

When measuring slightly above the resonance frequency a moderate feedback on the os-
cillator  took  over 
control,  so  one  sin-
gle  data  point 
showed  an  unex-
pected value. 

Remarkable  is  that 
the  selectivity  far 
from  the  resonance 
is  rather  limited. 
This is caused by the 
stray capacity of the 
crystal.  Therefore 
the crystal filter shall 
always be combined 
with  an LC  filter,  to 
reduce frequencies far from the xtal resonance. 

4.4 Automatic control of the DCF77 signals
The gain control as well as the frequency adjustment can, for test purposes, be adjusted 
with resistor trimmers. A usual trim potentiometer with 270° is sufficient. 

More comfortable is when a micro-controller does that work. Measuring, adjusting and 
control of the AGC and AFC can be done with an ATtiny45, as shown here in detail. 
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Path: Home => AVR overview => Applications => DCF77 receivers => DCF controller

Applications of
AVR single chip controllers 
AT90S, ATtiny, ATmega and 

ATxmega

DCF77 controller 
with ATtiny45

5 DCF77 controller with ATtiny45
To ensure that the DCF77 clock owner does not have to adjust its frequency and gain 
steadily and with a trim resistor, and to ensure that the DCF77 information does not have 
to be decoded by counting and assembling single bits, a small controller has been devel-
oped that does all that: taking care for the receiver and decode the DCF77 bits. 

The results of that control are 

1. two PWM signals: 
1. a gain control signal, ranging from 0 to 255, where larger numbers decrease 

the gain of the receiver, so that enough, but not too large DC from the AM 
rectifier results, 

2. a frequency control signal, ranging from 0 to 255, which increases the varac-
tor diode's capacity with increasing values and frequently tries out, if an in-
creased or decreased voltage increases the drop difference of the rectified 
DCF77 signal, by that keeping the input frequency of the ferrite antenna al-
ways on the center of DCF77's transmit frequency, 

2. the checking that amplitude drop and pause times of the DCF77 signal are within 
the correct expected times of 100 or 200 ms (for a zero or one bit received), of 800 
resp. 900 (for an inactive pause with high amplitude following reception of a one or 
zero  bit)  or  of  a  high  amplitude  for  either  1800 or  1900  milliseconds  (minute 
change following reception of the 59th or last one or zero bit), times plus and mi-
nus a selectable tolerance percentage, 

3. to collect DCF77 bits, if the 100 or 200 ms long amplitude drops occur, and to store 
those 59 bits per minute in a correct row in the SRAM, 

4. on a minute change correctly received: to check all parity bits of DCF77 (minutes, 
hours, date) for correctness, 

5. to convert the received bits for minutes, hours, weekday, day, month and year from 
BCD to binary format, and to 

6. send all those information, including error messages and status information, over a 
one-way two-wire interface to another controller, that can receive and display all 
that on an LCD. 

5.1 Why assembler? Why an ATtiny45 and nothing else?
Lots of things to do for 

• an 8-bit-8-pin ATtiny45 controller with max. 2,048 instruction memory words and 
256 bytes of SRAM storage space, 
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• but manageable tasks if you do all that in assembler and not in one of the memory-
space  eating,  time-wasting  and  completely  inadequate  library-focused  styles  of 
high-level-languages such as C or Bascom, 

• a controller, but using the wonderful instruction set that the two Norwegians have 
designed reduces CPU instruction steps from three or four, as necessary in less 
well-designed PIC assembler, down to one, speeding up execution and to work with 
the default 1 MHz clock rate, 

• such a small and slow controller, speeded up by the use of fast interrupts to ensure 
that  all  different  hardware  tasks  are  executed  timely  and  exactly  then  when 
needed, without wasting any time for unnecessary wait loops, 

• the six pins I/O: 
• two to switch a PWM output on and off very fast (a very special and exclusive 

feature of the ATtiny25/45/85, with their very fast internal 64/32 MHz PWM 
oscillator, allowing to use small capacitors to generate low-humming as well 
as very fast-responding PWM signals, do not try this with another ATtiny or a 
PIC as it does not work with such high speed, 

• another two pins for the one-way serial communication with the other con-
troller, allowing a lean and fast sending baud-rate, just enough to fit into the 
overall time schedule and to allow the receiver to collect those bits in an in-
terrupt-driven scheme, 

• one pin to measure the amplitude DC, coming from the receiver's rectifier 
stage, by use of the internal AD converter, with conversion initiated in con-
stant time intervals to ensure that the measuring rate fits well with the am-
plitude changes of DCF77, 

• the RESET pin, that allows In-System-Programming of the ATtiny45 during 
the software design stage, without having to remove the chip. 

The additional controller to display those signals on an LCD was necessary to have all the 
pro's of the ATtiny45 PWM features and to allow the use of other controllers for the display 
or if you need any further DCF77-date-and-time-dependent switching only. If you need 
only two or three channels to be switched on and off only during weekdays you can use an 
ATtiny13 instead: connect serial clock with INT0, serial data with any other pin and the 
two or three output pins with your switches. The DCF77 controller says which weekday 
currently is and which time and date. Even if DCF77 is off: the status messages allow to 
detect such failures and to switch to a software-driven clock scheme instead. 

5.2 The schematic of the 
ATtiny45 controller for DCF77
This is all you need. It works with an ATtiny45 
or ATtiny85.

The two PWM outputs OC1A and OC1B gener-
ate the two voltages for AGC and AFC and use 
the  high-speed-PWM  features  of  the 
ATtiny45/85. The High-Speed PWM oscillator of 
64 MHz is switched by software to low speed 
(32 MHz is sufficient), then divided by 8 in the 
prescaler,  to  yield  a  PWM  frequency  of 
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31.25 kHz. Both outputs are connected to a two-stage RC network of 10kΩ and 1µF. This 
ensures that digital humming is small enough and that the analog voltages produced react 
fast enough to any changes of the PWM value. 

The rectified and RC filtered (0.01 ms) AM DC signal from the DCF77 receiver is fed to the 
AD converter channel ADC3. Conversion is clocked by TC0's timer overflow, that occurs 
every 16.4 ms. The amplitude drop of 100 ms length for a transmitted zero results in six, 
for a one in approximately twelve measurements. A zero and a one, followed by a minute 
change pause of approximately 1,800 ms, happen within three seconds or over 183 mea-
surements. The storage of such measurement results, in order to calculate averages and 
to measure pulse durations, requires 183 SRAM bytes. That is why the ATtiny25 does not 
fit. 

The whole time and date detection of the DCF77 signal as well as the AGC and AFC control 
is based on this collection. No further RC filters are necessary (like this wou?d be the case 
to detect the minute change in the DCF77 signal, see the chapter on how-it-works below). 

Serial output of the results is done with the pins PB0 (data master, SDM) and PB2 (clock 
master, SCM). As communication in backwards direction is unnecessary, both outputs are 
always master and active. The two LEDs can be used to view active signal traffic. 

The ISP interface can be used to program the chip within. It is not necessary if pre-pro-
grammed ATtiny45/85 are used. 

5.3 Functioning

5.3.1 Start-up phase

When the controller starts, it absolves a start-up phase. This adjusts the AGC and the AFC 
to start-up values. Both start with decimal 255 in their PWM channels or +5V. On every 
complete batch of 155 measurements the AGC value is decreased by eight (maximum 32 
batches or 81 seconds). The decrease stops if either 

1. a minimum of 0.5 V has been reached, or 
2. a maximum of 2.5 V has been exceeded, or 
3. zero has been reached. 

In any case the first approach of AGC adjustment is over then, further adjustment is taken 
over by each completed batch by 

1. increasing the PWM value, if the maximum is larger than 2.5 V, or 
2. decreasing the PWM value, if the maximum is smaller than 2.0 V. 

In the second phase the AGC value is adjusted. After each batch the AGC PWM is de-
creased and the difference between maximum and minimum is  stored in  SRAM.  This 
phase is stopped when the AFC PWM value reaches zero (which takes another 81 sec-
onds). 

Software then searches for the first maximum value in the stored values, starting from the 
difference at the PWM value of 255. This is done because, in case of a larger ferrite coil, a 
second maximum can occur  that  relates  to  one of  the  two  coils,  which  can be  even 
stronger than the combined one, but signal strength at that decreases very fast if the di-
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rection of the ferrite changes slightly. If the first maximum is identified, the AFC PWM is 
written to that value. 

Further frequency adjustment is then done on each batch completion: the AFC PWM value 
is increased, and then decreased, and the difference of the maximum and minimum de-
cides, whether the last change is repeated (if the difference is larger) or if the direction 
changes (if the difference is smaller). If the maximum has not been found during the AFC 
scan period, the frequency scan is repeated over and over again. 

5.3.2 Detection of zero/one bits and minute change

During the AGC and AFC scan periods normal checking of incoming single values is omit-
ted. Only if both the bGScan and bFScan flags are set, the single values are checked 
whether a level change has happened. To do that, the last three measurements, as stored 
in three registers and updated whenever a new measurement is completed, are compared 
with the average value. The average value is updated whenever a complete batch has 
been measured, it is the maximum value minus the minimum value. 

If the last values were inactive (higher than average) it is waited for three succeeding val-
ues below average. If those are detected 

• the detection direction bit is changed to increasing values, 
• the length, over which the inactive high period lasted, is calculated, if this 

• is below the minimum period of a zero, or 
• in between the maximum period of a zero and the minimum period of a one, 

or 
• in  between the maximum period of  a one and the minimum period of  a 

pause, or 
• in between the maximum period of a pause and the minimum period of a 

minute change, or 
• beyond the maximum period of a minute change 

an error condition has occurred and is reported with an E code via the serial inter-
face. 

• if the duration is in between the minimum for a minute change and its maximum, it 
is checked whether exactly 59 bits have been received. If that is the case, the com-
plete set of DCF77 bits is converted (see below), otherwise an error is send. 

If the previously recognized stage was a signal coming in (three values were below aver-
age) the last three values are checked for a signal end. If all three are above average the 
detection of high-to-low signals is switched on. The signal duration of the low-signal is 
checked for the minimum length of a zero and its maximum as well as for a one with its 
minimum and maximum. If a correct zero or one has been identified, the respective bit is 
shifted into the bit storage and counted. If not, respective error messages are send via the 
serial interface. 

5.3.3 Generation and properties of the PWM signals

The two outputs OC1A and OC1B generate PWM signals for adjusting gain and frequency. 
8-bit timer TC1 is in asynch mode: the PWM clock is at 64 MHz, slowed down by two and 
is divided by 8. The PWM width is 256 stages, so the resulting PWM frequency is 64 MHz / 
2 / 8 / 256 = 15.625 kHz or a PWM period of 64 µs. 

Page 51 of 112



To filter the harmonics, a double RC filter with 10kΩ and 1µF follow. The filter was simu-
lated with the Libre-Office spreadsheet  here. On start-up, when both capacitors are un-
loaded and the PWM is set to 255, the following voltage increase happens. 

The  increas-
ing  curve 
shows  that 
the  RC  filter 
has  nearly 
complete the 
end point af-
ter  0.1 sec-
onds  and 
completely 
after  0.2 s. 
That  is  fast 
enough  to 
not having to 
wait  on 
start-up  for 
the  stabilized  voltage.  The  second  capacitor  follows  slightly  behind,  but  is  also  fast 
enough. 

The change speed from full load down to zero (not exactly zero, as the PWM has a mini-
mum of 1, which corresponds to a minimum of 19.5 mV), is similar. The end value is 
reached within 0.2 s. 

To demonstrate the speed of change for a small difference in PWM values, this shows the 
voltages  on 
both  capacitors 
if  the  PWM  is 
switched  from 
255  down  to 
254  (normal 
switching  is  by 
one  unit, 
19.5 mV).  The 
first  capacitor 
shows  voltage 
drops  (hum-
ming)  of  3  to 
4 mV  by  the 
single  low 
phase  among 
255  high 
phases, the second capacitor is completely free of this humming. 

The voltage on C2 is a bit delayed, but by less than 5 ms. That is fast enough for the AFC 
and AGC adjustment, the next ADC measurement after 16.384 ms will already reflect the 
new voltage setting. 
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Do not try this with a different type of ATtiny or a different controller, it does not work due 
to lower PWM frequencies. 

5.3.4 Measuring and evaluation of the AM DC signals

To ensure that measuring the amplitude voltage in constant time slices the AD conversion 
is started by the overflow of timer TC0 using the ADATE bit of the ADC. The TC0 prescaler 
is set to 64, so that the conversion starts all 256 * 64 * 1,000 / 1,000,000 = 16.384 ms. 
The conversion, with an ADC clock prescaler of 128, needs 1.664 ms (see section Timing 
in the source code). 

Reading of the ADC values is performed within the ADC's interrupt service routine: 

1. only the upper 8 bits of the result are read (ADLAR is activated), 
2. the value read is written to the registers rLast, so that the last three measurements 

are available in the registers rLast1 to rLast3, because the amplitude drop detection 
is based on those three values (outside the ISR), 

3. the value is written to an SRAM buffer sBuffer, that is adjusted to a length of 155 
measurements, corresponding to the last 155 * 16.384 ms = 2.54 seconds. 

If the buffer is full, the flag bBufFull in the flag register rFlag is set. Outside the interrupt 
service routine this bit is recognized and the complete buffer is searched for the maximum 
and minimum values. The difference between the two extremes is then 

1. evaluated if the minimum difference in cAmVoltDelta has been reached. If this is 
not the case, error message E0 (DCF77 signal time-out) is issued over the serial in-
terface, further bit evaluation is blocked by setting the bMin flag in the flag register 
and a frequency scan is re-started by clearing the bFScan flag, 

2. divided by two and added to the minimum value. This value is used as compare 
value to decide whether the signal strength is above or below the average value. 

The maximum, average and difference values are applied until the next buffer is filled (af-
ter 2.54 seconds). From the measured difference value the AGC adjustment is derived on 
every buffer-full event: 

1. The PWM value is either increased or decreased in the next period, depending from 
the result of the last increase or decrease. 

2. If the last change was an increase: 
• it is checked whether the difference between max and min has increased in 

that period, if that is the case, the next higher value is written to the PWM 
compare register, 
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• if that is not the case and the difference is smaller or equal the change direc-
tion is reversed to decrease and the next lower PWM value is written to the 
PWM compare register. 

3. If the last change was a decrease the opposite is performed. 

That means, that in case that the difference is equal, the direction is changing each time 
the buffer is full, and that the PWM value constantly goes up and down by one unit.

The AGC PWM is adjusted as follows: 

1. if the maximum value is smaller than 2.0 V, the gain is increased by decreasing the 
PWM compare value by 1, 

2. if the maximum value is larger than 2.5 V, the gain is decreased by increasing the 
PWM compare value by 1, 

3. if the maximum is in between 2.0 and 2.5 V, the PWM value is not changed. 

If neither bGScan nor bFScan are cleared, the edge detection is active. Edge detection 
works as follows: 

1. The flag bHi in the flag register stores if the last edge was a low-to-high transition, 
the register rTransH:rTransL holds the SRAM buffer position when the last transi-
tion happened. 

2. If  bHi is set, an amplitude drop is to be detected. It is checked whether the last 
three values in rLast1, rLast2 and rLast3 are all below the average value. If that 
is not the case the detection routine ends and waits for the next value. If it is the 
case, 

• the flag bHi is cleared, 
• the difference between the current and the last transition in the buffer is cal-

culated and evaluated whether the duration of the high-state was, within the 
tolerances, a correct pause between the last zero or one bit and the start of 
the next bit or a correct minute change. In the latter case the DCF77 bits are 
checked  whether  59  were  received  and  the  DCF77  time  and  date  are 
checked, converted and issued. 

• the current position in the sBuffer is written to rTransH:rTransL. 
3. If bHi is clear, the next rising edge is to be detected. This is the case if all  rLast 

registers are above average. If this is the case, 
• the flag bHi is set, 
• the duration of the low signal is calculated by comparing the current sBuffer 

position with the start position in rTransH:rTransL. If this is within the tol-
erance area of a zero or a one, the respective bit is shifted into the DCF77 
bits received and counted. If not, respective error codes are transmitted over 
the serial connection, 

• rTransH:rTransL is updated. 

5.3.5 Serial transmission

The serial transmit routine is called whenever the ADC reports a single measurement re-
sult (any 16.384 ms) and after all actions to be taken are completed. The messages to be 
send are written into a ring buffer in SRAM, with two bytes for each message. The buffer 
input and output addresses are held in two register pairs. On calling the send routine it is 
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checked whether input and output addresses are equal. If that is the case, nothing is 
send. 

If there are messages to be send, 

1. the message is copied (2 bytes), 
2. it is send bit-by-bit (starting with bit 15 down to 0) over the serial pins by 

• placing the bit onto the serial data output pin, 
• waiting for a certain delay time for settlement, 
• setting the serial clock output pin high for a certain time, then clear again, 

and for all 16 bits, 
3. increasing the message output address by two. 

The receiver has to 
be  able  to  receive 
each  bit  within 
50 µs  (at  10 kBd) 
resp.  25 µs  (at 
20 kBd). A PCINT in 
the  receiver,  with 
shifting the bits and 
counting,  takes 
27 clock  cycles,  so 
the receiver has to work with at least a clock rate of 540 kHz at 10 kBd or 1.08 MHz at 
20 kBd. So the default is set to 10 kBd to be compatible with a 1 MHz clock rate of the re-
ceiver.  

If necessary, any 16.384 ms a data set transmit requires 800 or 1,600 µs time. For flag 
handling and all other operations nearly the complete time between this and the next ADC 
event is available (16.3 milliseconds), because the AD conversion does not need any ac-
tion. Transmit baud-rates of 10 or 20 kBd are compatible, the lowest possible baud-rate 
would be roughly 8 ms for 16 Bits = 2 kBd. 

Lots of different information have to be send to the receiver. To ease processing of those 
in the receiver, the 16 bits were divided into the MSB, consisting of an ASCII character, 
and a second LSB that holds an additional parameter. All message codes are listed in the 
table, in "" enclosed characters are ASCII, in () enclosed values are binary numbers. 

Parameter High Byte Low Byte Duration (ms)

Statusmeldungen

16.4

Restart "R" 0

Frequency scan completed "C" 0=not ok, 1=ok

Signal strength "S" (AGC value)

Frequency "F" (AFC value)

Received DCF77 time 98.3

Minutes "m" (Minutes)

Hours "h" (Hours)

Weekday "W" (Weekday)

Day "D" (Day)

Month "M" (Monath)
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Parameter High Byte Low Byte Duration (ms)

Year "Y" (Year)

Bit monitoring

16.4Zero received "0" 0

One received "1" 1

DCF77 error messages

16.4

Time-out "E" "0"

Short signal "E" "1"

Between zero/one "E" "2"

Between one/pause "E" "3"

Between pause/minute "E" "4"

Longer than minute "E" "5"

<>59 bits "E" "6"

Number of bits "B" (Number of received bits)

Parity minutes odd "E" "7"

Minute ones > 9 "E" "8"

Minutes > 59 "E" "9"

Parity hours odd "E" "A"

Hours ones > 9 "E" "B"

Hours > 23 "E" "C"

Parity date odd "E" "D"

Weekday = 0 "E" "E"

Day = 0 "E" "F"

Day ones > 9 "E" "G"

Day > 31 "E" "H"

Month = 0 "E" "I"

Month ones > 9 "E" "J"

Month > 12 "E" "K"

Year ones > 9 "E" "L"

Year > 99 "E" "M"

Debugging messages

32.8Buffer filled "a" (Average value)

Delta max - min "d" (Difference)

All transmitted time and data of a successfully evaluated DCF77 signal set require approxi-
mately 100 ms. This can be used to adjust the seconds counter of the receiver clock to 
synchronize the start of the next minute. 

The debugging messages are only send if the respective debugging switches are set to 
Yes. 

The  signals  that  the  transmitter  produces  look  like  shown  here  (left:  10 kBd,  right: 
20 kBd). Send here was 0xAAAA (ones and zeroes). The data signal on PB0 (SDM) is red, 
the clock signal on PB2 (SCM) is green.
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5.4 Software
$$ 
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5.5 Operation experiences
$$  

©2019 by http://www.avr-asm-tutorial.net 
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Path: Home => AVR overview => Applications => DCF77 receivers => DCF display

Applications of
AVR single chip controllers 
AT90S, ATtiny, ATmega and 

ATxmega

DCF77 display 
with ATtiny24

6 DCF77 display with an ATtiny24

This device 

1. receives  the  serial 
signals  from  an 
ATtiny45 decoder and 
displays  those on an 
LCD, 

2. is  working  with  the 
ATtiny24 
experimental  device 
with LCD and can be 
attached using a sim-
ple six pin plug, 

3. uses the LCD include 
software  as  shown 
here to  drive  the 
LCD, and 

4. has an additional sec-
onds counter and display that simply counts from 0 to 59. 

The device can be used as a complete display for all DCF77 receivers as described on that 
webpage, providing time and date from the receiver as well as status and error messages.

The displayed device works a little bit different: the ATtiny24 is mounted, together with 
the ATtiny25 controller, on one PCB. Wiring is slightly different, but not very much.

6.1 Connecting the device with the receiver
With a six pin flat cable, both sides equipped with a plug, connect 

1. pin 1 with GND (minus operating voltage), 
2. pin 2 with +5 V operating voltage, 
3. pin 3 with the serial clock pin of the ATtiny45 controller (SCM), and 
4. pin 6 with the serial data pin of the ATtiny45 (SDM). 
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See the schematic of the Tiny24-LCD experimental display device here. All you need to do 
is programming the ATtiny24's flash memory with the software provided here. 

6.2 Display
When  starting  and  with-
out  any  serial  input  sig-
nals  the  program  starts 
like this. 

In  line  2  behind  Raw 
data: the  incoming  raw 
data is displayed. The first 
character  (MSB in  rRxH) 
is  simple  ASCII,  then 
rRxL follows in hexadecimal format. If the displayed first character is an F: then the PWM 
value of the frequency adjustment follows as a three-digit decimal. 

The incoming DCF77 data for the time (hours and minutes) follow in line 3. The seconds 
display is internally generated and counts even without DCF77 signal. Behind the ASCII 
character S: the PWM value of the gain adjustment follows in 3-digit decimal format. 

Line 4 displays the weekday and the date, with format depending from the language cho-
sen, and any signal errors behind E:. 

The display changes when the ATtiny45's SCM and SDM are connected. 

6.3 Software for the ATtiny24
The software can be downloaded as assembler source code from here or can be displayed 
in the attachment here. 

The following chapters describe the software's functions further. 

6.3.1 Reception of the serial signals

Serial reception works as follows: 

1. On each level change on the PA0 input pin (SCM signal) a PCINT0 interrupt is exe-
cuted. 

2. If the PA0 pin is high, following level change, a bit on the data input pin PA1 has to  
be shifted into the register pair for serial signals (rSerialH:rSerialL), starting from 
bit  0  (rotate  left).  The number  of  received bits  is  down-counted from 16,  if  it 
reaches  zero  the  content  of  the  serial  registers  is  copied  to  the  register  pair 
rRxH:rRxL, the flag bRxIn is set and the counter restarts with 16. Any bit recep-
tion sets the time-out counter rSerialTO to its start value. 

3. Outside the PCINT0 routine the time-out-counter is counted down. If  it  reaches 
zero, the counter of still-to-be-received-bits is restarted at 16. 

The further handling of the 16 bits received in rRxH:rRxL is performed outside the Inter-
rupt-Service-Routine. Depending from the MSB in rRxH the lower 8 bits in rRxL are han-
dled differently. The modes are part of a table PosTable:: 
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1. Each line of the table starts with the respective ASCII character. 
2. The two following bytes are the line and the column where information on the LCD 

will be displayed (zero-based numbers). 
3. If the parameter concerns a DCF77 info, its displacement in SRAM follows as a byte. 

If not, 255 follows. 
4. The type of displaying the parameter follows as byte. A zero simply displays the pa-

rameter as ASCII character. A 1 displays as a 2-digit decimal, a 2 as 3-digit deci-
mal. A 3 displays as a weekday (zero-based) and a 4 

• shifts the received zero or one into a register buffer, and 
• displays the last four received bits as binary ASCII characters. 

5. The closing zero in each line brings the byte count to an even number of bytes. 
6. The table ends ends with two zeroes. 

Extending the ATtiny45 controller software with further parameters can simply be added 
to this table. The structure can also be used with other controllers. 

6.3.2 Seconds and serial interface time-out

For generating the seconds the timer TC0 is used. It divides the clock signal of 1 MHz (de-
fault clock rate) with a prescaler value of 8 and by 125, which yields a 1 ms time inter-
rupt. The interrupt counts down a counter in register pair  rSecH:rSecL that starts with 
1,000. If the counter reaches zero, the flag bSec is set and the register pair is restarted 
with 1,000. 

If the seconds flag is set, the seconds are advanced and displayed at the respective posi-
tion on the LCD. If the seconds reach 60, the seconds counter restarts. 

The milli second interrupt also decreases the time-out value. If, after 8 ms, this reaches 
zero the number of bits-to-be-received restarts with 16. 

6.3.3 Debugging option

This option, if the debug switch Debug_display is set to Yes, simulates the reception of 
serial signals. The bit combination in the constant cDebug_displayH and cDebug_dis-
playL is tested. The debug switch has to be set to No to assemble the final version of the 
software.

6.4 Assembler source code for the DCF77 display with 
ATtiny24
This is the software for the DCF77 display with an ATtiny24. The source code can be 
downloaded from here in asm format. To assemble it needs the Include routines here.

;
; (Software still under construction)
;
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7 DCF77 AM rectifier with ATtiny25

For the DCF77 signal of 77.5 kHz from a direct receiver or for the IF of 32.768 kHz from a 
superhet one needs a rectifier for AM signals. Usually one uses a diode rectifier. But as 
diode rectifiers for AM RF/IF always have the disadvantage that their forward voltage of 
0.2 to 0.3 Volt won't let them detect signal amplitudes smaller than that 0.2 to 0.3 V, I de-
signed and built  a microcontroller  rectifier.  This  device detects  amplitudes of  down to 
5 mVpp. 

Note that this design is limited to frequencies below 100 kHz, so the device is not de-
signed and doesn't work correct with an IF of 455 kHz or higher! 

7.1 How it works
The rectifier works with a microcontroller, here an ATtiny25, and its built-in ADC channel 
3. The controller runs with its built-in RC oscillator at a clock rate of 8 MHz (CLKPR is set 
to 1 by software).
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7.1.1 Hardware

The ADC is  working 
in  free  running 
mode,  that  is:  he 
restarts  the  next 
conversion whenever 
the  conversion  is 
complete.  The  ADC 
clock prescaler is  at 
4,  so  the  ADC runs 
with  2 MHz. As each 
conversion  in  free 
running  mode  takes 
13.5 cycles, the ADC 
works with a conver-
sion  frequency  of 
2 MHz  /  13.5  = 
148.2 kHz  and  one 
conversion lasts 6.75 µs. 

The RF of 77.5 kHz or the IF of 32.768 kHz comes in as a sine wave with an amplitude be-
tween 0.0 and 5.0 Vpp. The voltage divider with the two 100kΩ resistors divides the oper-

ating voltage by two, the 1nF capacitor transfers the RF/IF to the ADC3 input of the AT-
tiny25, so that the sine wave produces the following 10-bit ADC conversion results from 
the input voltage: 

• no amplitude: ADC result approximately 512, 
• positive swing: ADC result larger than 512, 
• negative swing: ADC result smaller than 512. 

So all the controller has to do is to 

1. subtract 2 from the MSB of the result, 
2. if that yields the carry flag being set: to invert the result. 

That rectifies the signal: negative swings will get positive, positive ones remain positive 
(Rectification). The result is nine bits wide (0 to 511). 

This is repeated over and over again (with the ADC in free running mode) for 128 times, 
hence over 128 * 6.75 = 864 µs. The maximum of these 128 measurements is the high-
est/lowest detected amplitude of the input swing. This maximum is selected from  128 
measurements of 28 (32.768 kHz, 30.5 µs per wave) or 67 (77.5 kHz, 12.9 µs per wave) 
sine waves, so that the maximum is very likely to be detected. 

The detected maxima are added up 8 times, the result is divided by 16 to yield an 8-bit 
average value for the PWM's compare B value. With that the measuring time is 8 * 864 µs 
= 6.91 ms. 

Page 63 of 112



7.1.2 Duo-LED option

The  device  can  be 
equipped  with  a  red/
green  or  red/yellow 
duo-LED to display the 
results.  Then  display 
on  the  LED  works  as 
follows.  With  small 
amplitudes  red  domi-
nates,  the  higher  the 
more greener the LED 
gets.

This  is  achieved  by 
setting  the  comparer 
values  of  TC0  to  the 
same value, the TC1’s PWM value in OCR1B. The OC0-bit-behavior is to set OC0A on the 
beginning of the PWM cycle and to clear the OC0A on compare match (un-inverted). The 
OC0B is reversed: it is set at the beginning and cleared on compare match. This yields the 
following behavior:

When  both  comparers  have  a  compare 
match, the color changes from green to 
red. If the compare match occurs at 255, 
the red LED is never on.

The earlier the longer is the LED red on 
and  the  green  LED  off.  The  time  over 
which  one of the two colors are on is al-
ways 100%.
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If  OCR0A  is  different  from  the  OCR0B 
value, the behavior is rather different. As 
the OC0A output is set at PWM cycle start, 
while  OC0B is  cleared,  the  green  LED is 
turned on. 

This stays on until OCR0A is reached: this 
clears OC0A and, as OC0B is also cleared, 
switches both LEDs off. This changes later 
on, when OCR0B is reached: this switches 
the red LED on. This remains on until the 
end of the PWM cycle.

This  is  also  the  case  if  OCR0A  is  larger 
than  OCR0B:  the  inactive  time  now  has 
both  pins  set.  This  mode  reduces  the 
brightness of both LEDs, the larger the dif-
ference  between  OCR0A  and  OCR0B  the 
longer the pause with both LEDs off. The 
duration of  the green on and the red on 
can still be altered, but only to the avail-
able rest of the time. 

7.1.3 DC Output

TC1  produces  the 
output. On PWM cy-
cle  start  the  output 
pin  OC1B is  set,  on 
reaching  compare 
match B it is cleared 
(positive  PWM  sig-
nal). 

The averaged ampli-
tude feeds the com-
parer  of  the  8-bit-
TC1  timer  that  runs 
as  PWM  with  the 
compare  B  in  fast 
PWM mode. The timer is clocked by the 8 MHz controller clock and without prescaling. The 
PWM runs with a frequency of 31.25 kHz, one cycle lasts 32 µs. The PWM value is updated 
every 13.82 ms / 32 µs = 423 cycles. 

The OC1B output signal is filtered by a 3-stage RC filter with R=6k8 and C=150n. The 
time constant of this RC network is t = 0.69 * R * C = 0.7 ms. The diagram shows the re-
sponse of the filter on startup with an 80% PWM pulse and to a level change to a 20% 
PWM pulse after 35 ms.
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The approximately 15 to 20 ms that the RC network needs to swing to a new value is 
short enough to detect 100 ms long amplitude drops for a transmitted 0-bit of DCF77 and 
a 200 ms long voltage drop for a 1-bit. 

The PWM hum of the RC network is 

1. stage 1 (VC1, red): 0.29 Vpp, 

2. stage 2 (VC2, yellow): 17 mVpp, 

3. stage 3 (VC3, green): 5 mVpp. 

So the PWM noise on the third stage is roughly one digit of a 10-bit ADC result and the RC 
provides sufficient filtering.

Averaging over 16 measurements ensures that single failures to detect the maximum of 
the input signal are smoothly handled. 

7.1.4 Available resources

All drawings shown here are available as a LibreOffice Draw file here (see the last drawing 
for the rectifier). 

The LibreOffice  Calc  file  am-rect_tn25.ods provides  all  calculations  that  can be useful 
when changing the design and properties of the device (ADC sampling, clocking, RC-filter 
and filter response, Duo-LED configuration, etc.). Please note that if you play around with 
the values therein: do not increase the speed of the AD converter, the prescaler will have 
to 4 or higher. Otherwise the interrupt service routine is not fast enough to handle all the 
interrupts and blocks other program steps from being served.

7.2 Testing
I've tested the rectifier by using the generator to the 
right. It generates a sine wave either with 77.5 kHz (no 
parallel C) or 32.8 kHz (1n5 parallel to the coil).  The 
signal is not a very nice sine wave, but it fits to the rec-
tifier.

The potentiometer in the source 
line of the FET allows to dim the 
signal strength. 

This  is  the  rectifier  on  a  test 
stand. Unfortunately the genera-
tor  does  not  provide  a  full  5 V 
swing,  so  you  do  not  get  the 
Duo-LED to full green color. 
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7.3 Software for the rectifier
The  software  for  the  ATtiny25  is  written  in  assembler.  The  source  code  is  here  in 
assembler source code format and is listed below. No fuses have to be changed, the in-
crease of the clock frequency from the 1 MHz default to 8 MHz is done by software. 

The program is interrupt-driven. No sleep mode is used because the fast ADC sampling 
eats up most of the time. 

When assembling make sure that the two settings "DuoLed" and "LedOnly" are set to your 
needs: 

• If you do not need the Duo-LED, switch it off by setting DuoLed to Zero. 
• If you want to experiment with the Duo-LED only set LedOnly to 1. If you program 

the final, don't forget to set it to Zero again. 

The program has been tested and works fine as designed. 

The original source code for the ATtiny25 rectifier is here. This is only a HTML formatted 
listing.

;
; ******************************
; * AM rectifier with ATtiny25 *
; * (C)2020 by DG4FAC          *
; ******************************
;
.nolist
.include "tn25def.inc" ; Define device ATtiny25
.list
;
; **********************************
;       P R O P E R T I E S
; **********************************
;
.equ Duoled = 1 ; 1 if Duo-LED attached
.if DuoLed == 1
  .equ DuoledSpeed = 2 ; Speed factor for Duo-LED
    ; 1: 30.5 Hz
    ; 2: 122.1 Hz
    ; 3: 488 Hz
    ; 4: 3.91 kHz
    ; 5: 31.25 kHz (use this when simulating)
  ; Test the Duo-LED only
  .equ LedOnly = 0 ; Display red/green only
  .if LedOnly == 1 ; Define colors
     ; The intensities of the LED colors
     .equ cLedOnlyColor = 0x20 ; Green=0x20, red=0xC0

 .endif 
  .endif
.equ MaxAverage = 8 ; Number of maxima to be averaged, 2..128
.equ cMaxCnt = 32 ; Count of measurements for detecting maximum
;
; Error checking
.if (MaxAverage<2) || (MaxAverage>128)
  .error "Illegal MaxAverage value selected!"
  .endif
.if (2<<(LOG2(MaxAverage)-1)) != MaxAverage
  .error "MaxAverage has to be a power of 2!"
  .endif
.if (MaxAverage*cMaxCnt)>1024
  .message "Warning: Averaging too long for DCF77!"
  .endif
.if cMaxCnt<16
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  .message "Warning: Too few countings for max detection!"
  .endif
.if cMaxCnt>255
  .error "Too many counting events for max detection!"
  .endif
.if (DuoLedSpeed<1)||(DuoLedSpeed>5)
  .error "Wrong DuoLedSpeed setting!"
  .endif
;
; **********************************
;        H A R D W A R E
; **********************************
;
; Device: ATtiny25, Package: 8-pin-PDIP_SOIC
;
;             _________
;          1 /         |8
;  RESET o--|RESET  VCC|--o VCC, +5V
;  AM-IN o--|PB3    PB2|--o SCK
; DC-OUT o--|PB4    PB1|--o Red Anode, MISO
; 0V GND o--|GND    PB0|--o Green Anode, MOSI
;         4 |__________|5
;
;
; **********************************
;  P O R T S   A N D   P I N S
; **********************************
;
.equ pOutLedD = DDRB ; Portregister of LED
.if DuoLed==1
  .equ bOutLedD = (1<<PORTB0)|(1<<PORTB1)|(1<<PORTB4) ; DC output pin and Duo-Led
  .else
  .equ bOutLedD = 1<< PORTB4 ; Only the DC output for PWM
  .endif
;
; **********************************
;   A D J U S T A B L E   C O N S T
; **********************************
;
;
; **********************************
;  F I X  &  D E R I V.  C O N S T
; **********************************
;
.set cTc0Presc = (1<<CS02)|(1<<CS00)
.if DuoLedSpeed == 2
  .set cTc0Presc = 1<<CS02
  .endif
.if DuoLedSpeed == 3
  .set cTc0Presc = (1<<CS01)|(1<<CS00)
  .endif
.if DuoLedSpeed == 4
  .set cTc0Presc = 1<<CS01
  .endif
.if DuoLedSpeed == 5
  .set cTc0Presc = 1<<CS00
  .endif
;
; **********************************
;        T I M I N G
; **********************************
;
; Clock = 8000000
; ADC prescaler = 2
; ADC conversion steps = 13
; ADC conversion frequency = 307.69 kHz
; ADC conversion time = 3.25 us
; Measurements per sine wave
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;   at 77.5 kHz = 3.97
;   at 32.768 kHz = 9.39
;
; Maximum detection
;   Number of measurements = 32
;   Sampling time = 832 us
;   Sine waves measured
;     at 77.5 kHz = 64.48
;     at 32.768 kHz = 27.28
;
; Averaging maximums
;   Averaging = 16
;   Averaging time = 13.82 ms
;
; **********************************
;       R E G I S T E R S
; **********************************
;
; free: R0 to R8
.def rAvgL = R9 ; Average sum, LSB
.def rAvgH = R10 ; dto., MSB
.def rInL = R11 ; Maximum detected, LSB
.def rInH = R12 ; dto., MSB
.def rMaxL = R13 ; Maximum LSB
.def rMaxH = R14 ; dto., MSB
.def rSreg = R15 ; Save/Restore status port
.def rmp = R16 ; Define multipurpose register
.def rMaxCnt = R17 ; Maximum counter
.def rAvgCnt = R18 ; Average counter
.def rAdcL = R19 ; ADC value read, LSB
.def rAdcH = R20 ; dto., MSB
; free: R22 to R31
;
; **********************************
;           S R A M
; **********************************
;
.dseg
.org SRAM_START
; No SRAM used (only for stack)
;
; **********************************
;         C O D E
; **********************************
;
.cseg
.org 000000
;
; **********************************
; R E S E T  &  I N T - V E C T O R S
; **********************************

rjmp Main ; Reset vector
reti ; INT0
reti ; PCI0
reti ; OC1A
reti ; OVF1
reti ; OVF0
reti ; ERDY
reti ; ACI
rjmp AdccIsr ; ADCC interrupt
reti ; OC1B
reti ; OC0A
reti ; OC0B
reti ; WDT
reti ; USI_START
reti ; USI_OVF

;
; **********************************
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;  I N T - S E R V I C E   R O U T .
; **********************************
;
AdccIsr:
  in rSreg,SREG ; Save SREG
  in rAdcL,ADCL ; Read ADC LSB
  in rAdcH,ADCH ; dto., MSB
  subi rAdcH,0x02 ;
  brcc AdcIsr1 ; No carry
  neg rAdcL ; Negative LSB
  com rAdcH ; dto., MSB
AdcIsr1:
  cp rAdcL,rMaxL ; Compare with maximum
  cpc rAdcH,rMaxH
  brcs AdcIsr2 ; Smaller
  mov rMaxL,rAdcL
  mov rMaxH,rAdcH
AdcIsr2:
  dec rMaxCnt ; Count measurements
  brne AdcIsr3
  ldi rMaxCnt,cMaxCnt ; Restart counter
  mov rInL,rMaxL ; Copy maximum, LSB
  mov rInH,rMaxH ; dto., MSB
  clr rMaxL ; Restart maximum, LSB
  clr rMaxH ; dto., MSB
  out SREG,rSreg ; Restore SREG
  set ; Set input flag
  reti
AdcIsr3:
  out SREG,rSreg ; Restore SREG
  reti
;
; **********************************
;  M A I N   P R O G R A M   I N I T
; **********************************
;
Main:
.ifdef SPH ; If an ATtiny85 is used
  ldi rmp,High(RAMEND)
  out SPH,rmp ; Init MSB stack pointer
  .endif

ldi rmp,Low(RAMEND)
out SPL,rmp ; Init LSB stack pointer

; Increase clock to 8 MHz
  ldi rmp,1<<CLKPCE ; Enable CLKPR change
  out CLKPR,rmp ; in CLKPR
  clr rmp ; No prescaler
  out CLKPR,rmp ; in CLKPR
; Start values
  clt ; Input flag off
  clr rMaxL ; Maximum clear, LSB
  clr rMaxH ; dto., MSB
  clr rMaxCnt ; One full cycle max detection
  ldi rAvgCnt,MaxAverage ; Average over values
; Output pins as output
  ldi rmp,bOutLedD ; Output pins as output
  out pOutLedD,rmp ; in direction port
; Start Duo-LED
.if DuoLed == 1
  ldi rmp,0x80 ; Set both compare values to zero (LED half)
  out OCR0A,rmp ; Compare A
  out OCR0B,rmp ; Compare B
  ldi rmp,(1<<COM0A1)|(1<<COM0B1)|(1<<COM0B0)|(1<<WGM01)|(1<<WGM00) ; Clear OCR on match, 
Fast PWM mode
  out TCCR0A,rmp ; To timer control port A
  ldi rmp,cTc0Presc ; Set prescaler
  out TCCR0B,rmp ; in timer control port
  .endif
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; Start PWM on TC1
  clr rmp ; Compare A and B to zero
  out OCR1A,rmp
  out OCR1B,rmp ; To compare port B
  ldi rmp,0xFF ; 8-bit PWM
  out OCR1C,rmp ; in compare port C
  ldi rmp,(1<<PWM1B)|(1<<COM1B1) ; PWM on OC1B
  out GTCCR,rmp ; in control port GTCCR
  ldi rmp,(1<<CS10) ; Prescaler=1, resolution in OCR1C
  out TCCR1,rmp ; in control port 1
; Init ADC
  ldi rmp,(1<<MUX0)|(1<<MUX1) ; Channel ADC3
  out ADMUX,rmp ; To ADC mux
  ldi rmp,0 ; ADC free running mode
  out ADCSRB,rmp ; in control port B
  ldi rmp,(1<<ADEN)|(1<<ADSC)|(1<<ADATE)|(1<<ADIE)
  out ADCSRA,rmp ; Start first conversion in control port A
; Enable interrupts

sei ; Enable interrupts
;
; **********************************
;    P R O G R A M   L O O P
; **********************************
;
Loop:
  brtc Loop ; Input bit not set
;
; Input the next maximum
Input:
  clt ; Clear input flag
.if (DuoLed==1)&&(LedOnly==1)
  ldi rmp,cLedOnlyColor ; Set color
  out OCR0A,rmp
  out OCR0B,rmp
  .else
  add rAvgL,rInL ; Add result, LSB
  adc rAvgH,rInH ; dto., MSB
  dec rAvgCnt ; Decrease counter
  brne Loop ; If not zero, continue
   ; Calculate average
  ldi rmp,LOG2(MaxAverage)+1
Input0:
  lsr rAvgH ; Divide average by 2
  ror rAvgL
  dec rmp ; Count down
  brne Input0 ; Continue dividing
; Set PWM value
  out OCR1B,rAvgL ; Set PWM compare B
  .if DuoLed==1
    out OCR0A,rAvgL
    out OCR0B,rAvgL
    .endif ; 
  .endif
InputOut:
  ldi rAvgCnt,MaxAverage ; Restart counter
  clr rAvgL ; Clear average sum
  clr rAvgH
  rjmp Loop
;
; End of source code
;
; (Add Copyright information here, e.g.
; .db "(C)2020 by Gerhard Schmidt  " ; Source code readable
; .db "C(2)20 0ybG reahdrS hcimtd  " ; Machine code format
;

©2019-2020 by http://www.avr-asm-tutorial.net 
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8 DCF77 PCB layouts
All described receivers use an RF input stage, though slightly different for large and for 
small ferrite coils, as well as the ATtiny25 controller plus the ATtiny24 display stage. I 
have developped a versatile PCB that allows to suit to all the variations that are described 
here. A PCB with any desired concept can be scissored. All you need is a graphics de-
signer, such as PaintNet or GIMP for example, or, even better and more comfortable, the 
TGIF vector graphics program for Linux.

 
All variations fit well on a half Euro-size PCB (80x100 mm), as shown below. 

8.1 Modules and connections
This here shows the different modules and their related connections. 
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8.1.1 The HF-RX module

This module has a size of 20x80 mm. It consists mainly of the FET and the capacitor 
diodes for frequency adjustment. Two different variations, that differ only in the diode's 
connections, are here available: 

a. with anti-parallel  diodes, e. g.  with a KV1235Z and only two diodes used, or  a 
BB212, for larger ferrite coils, or 

b. with  parallel  diodes,  e. g.  with  the  three  KV1235Z  diodes  or  three  BB112,  for 
smaller ferrite coils. 

This module has the following external connections: 

1. the power supply for the whole receiver of +5 V, and 
2. the cross antenna (or any other ferrite coil). 

The module has the following in- and outputs: 

I. the operating voltage GND and + 5V to the amplifier/superhet, 
II. the two symmetric RF outputs HF+ and HF-, 
III.the AFC input for adjusting the frequency. 
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8.1.2 The Direct-Receiver modules

The  two  modules  for  directly  receiving  DCF77  with  transistors  or  the  one  with  the 
TCA440's IF amplifier are both of a size of 30x80 mm. The following connections are avail-
able: 

• To the RF receiver module: 
1. the operating voltage of +5 V, and 
2. the two symmetric RF inputs, and 
3. the AFC output, 

• To the controller- and display module: 
1. the operating voltage of +5 V, and 
2. the two inputs AFC and AGC, 

• To the rectifier module: 
1. the operating voltage of +5 V, and 
2. the RF/IF output. 

8.1.3 The Superhet receiver modules

(These modules are still under construction.) 

8.1.4 The AM rectifier modules

The two alternative rectifier modules, either with diodes or with an ATtiny25 controller, 
rectify the RF or IF and hand the result over to the controller/display module. The operat-
ing voltage for that stage stems from the Amplifier/Superhet stage. 

8.1.5 The Control- and Display-module

This module is identical for all receiver variations. The controller ATtiny25 measures the 
voltage that comes from the rectifier, and generates (via PWM plus RC filter) the AGC- and 
the AFC-voltages. The AFC voltage line crosses the amplifier/superhet module to get to 
the RF-RX stage. The DCF77 results are transmitted via the internal Two-Wire-Interface to 
the ATtiny24, which displays the results on the connected LCD. 

This module has additionally an ISP6 interface connector. This can supply the operating 
voltage from an attached ISP programming adapter, if the programming adapter provides 
5 Volt. If one of the three controllers shall be flashed, the programming pins RESET, MOSI, 
MISO and SCK can be temporarily attached to the ISP6 plugs using enameled wires. 

8.2 Links to the PCB layouts
The following parts are incomplete because not all layouts are complete. 

To download the files place the mouse over the entry and, in the context menu, select 
"Save linked file as ...". 

8.2.1 Layouts for the modules

The PCB layouts of the modules are available here as gif graphics files, e. g. for the RF-RX 
part those look like: 
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The associated component placement plan looks like this: 

Module
Size

Variation
PCB layout Component plan

mm gif tgif-obj gif tgif-obj

HF-RX 20x80
Anti-parallel HF-RX-A HF-RX-A HF-RX-A HF-RX-A

Parallel HF-RX-P HF-RX-P HF-RX-P HF-RX-P

Direct receiver 30x80
with Transistors Trans Trans Trans Trans

with TCA440 TCA440 TCA440 TCA440 TCA440

Superhet 
30x80

internal LC-
oscillator

SuperLC SuperLC SuperLC SuperLC

divided XTAL SuperXT SuperXT SuperXT SuperXT

50x80 regulated LC-
oscillator

SuperRegLC SuperRegLC SuperRegLC SuperRegLC

AM rectifier 50x23
with diodes Diodes Diodes Diodes Diodes

with ATtiny25 Rect25 Rect25 Rect25 Rect25

Controltn45Display-tn24 50x57 CtrlDisp CtrlDisp CtrlDisp CtrlDisp

8.2.2 Complete PCB layouts with combinations

All PCBs linked here are 100x80 mm (half Euro-Format), except the superhet with regu-
lated LC oscillator (120x80 mm).

Here for example is the combination of HF-RX-a, TCA440-Direct receiver, ATtiny25-Recti-
fier and ATtiny25-Controller/ATtiny24-Display on one single PCB. Layout and component 
placement are downsized (the originals below are double that size;!) 
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This  is  the  associ-
ated  component 
placement plan.
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Path: Home => AVR overview => Applications => DCF77 receivers => alarm clock m324pa 
Applications of

AVR single chip controllers 
AT90S, ATtiny, ATmega and 

ATxmega
DCF77 Alarm clock 
with ATmega324PA

9 DCF77 Alarm clock with ATmega324

Highly  experimental!  Not  tested  yet! 

With that project I will try to integrate 

• the AM rectifier for 77.5 kHz RF or 32.868 kHz IF, 
• the controller that controls the frequency of the input stage over the AFC line as 

well as the RF/IF amplifier stages via the AGC line and decodes the DCF77 signals, 
and 

• the display that shows date and time received. 

The picture shows the connections of the integrated module.

As this yields a full feature alarm clock, it should also include: 

• an XTAL driven time base that advances the clock even without a DCF77 signal over 
longer periods (or even never), 

• the opportunity to adjust date and time with three keys and a potentiometer, so 
that the clock works correct even completely without DCF77, 

• setting an alarm time, at which melodies are played on a small speaker. 
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• the opportunity to measure ambient light intensity and to adjust the backlight of 
the LCD with that. 

The ten connections to the right show the external components.

The project is an idea and not yet finished. 

9.1 Selecting the controller
In order to perform all these tasks the controller must have 

1. two PWM outputs at a high frequency for the AFC and AGC PWM, 
2. a PWM with a frequency of 100 to 200 Hz for the backlight, 
3. a 16-bit-timer in CTC mode with an OC output pin for generating the alarm tone 

and the music to be played, 
4. two xtal pins to clock the controller with a crystal, 
5. an 8-bit bidirectional port for the data transfer to the LCD and for reading the busy 

flag of the LCD as well as three single port pins for the control of the LCD, 
6. three pins for the three keys, that can interrupt whenever one of the key is pressed 

(either INTn or PCINTn), 
7. three analog converter inputs for RF/IF amplitude measurement (high speed ADC 

channel), ambient light sensor and a potentiometer to adjust date, time and alarm 
time digits. 

As one of timers also has to provide the 5-ms pulse for DCF77 signal analysis and for the 
derived second pulse, I selected TC2 for that purpose. As this requires mixed CTC (to ar-
rive at exact divider results) as well as PWM operation, OCR2B was selected for the LCD 
backlight PWM.
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This is avr_sim's device selection window with all necessary hardware features. Not many 
different devices fulfill all the required properties. All of them end with a 4. A price com-
parison with my preferred electronics dealer showed the ATmega324PA is my preferred 
selection. 

9.2 The hardware
This is the complete hardware schematic for the alarm clock.

The three ADC channels ADC0, ADC1 and ADC2 are connected to the following external 
devices: 

• the RF or IF signal of the DCF77 receiver, to be measured for its amplitude inter-
nally, as ADC0 input channel, 

• ADC1 has attached the ambient light sensor transistor, to be mounted to the out-
side of the clock's box, 
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• on  ADC2,  the  potentiometer  is 
attached  that  allows  to  select 
numbers between 0 and 59 (for 
seconds and minutes of the time 
and the alarm time) or between 
0 and 23 (for hours) as well as 
all other digits to be adjusted by 
the user). 

Usually  the  ADC  measures  the  RF/IF 
amplitude in a very fast manner and is 
in  free  running  mode  with  interrupts 
enabled. From time to time (the ambi-
ent  light  sensor  every  1.28 seconds, 
the  potentiometer  every  250 ms)  the 
free  running  mode  and  the  interrupt 
generation is stopped and the additional 
ADC  channel  is  measured  in  polling 
mode.

The device is clocked with a 4.096 MHz 
crystal on the XTAL1 and XTAL2 pins, so 
that  the  operation  of  the  clock  over 
weeks  and  months  without  synchro-
nization with DCF77 is exact enough for 
an alarm clock and the clock does not 
require re-adjustment. 

The AFC- and AGC-signals are produced 
by OC0A and OC0B via a two-stage RC 
network.  The  PWM  signal  works  at 
16 kHz, while the RC's half frequency is 
by 1000-fold lower at 14.5 Hz, so that 
the RC networks filters the signal good 
enough. While the humming on the first 
capacitor is at 7.82 Vpp, the second ca-

pacitor is at 10 µVpp humming, as the 

analysis in the sheet "rc_hum" in the LibreOffice calc file here shows. 
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The three keys are connected to PB0, PB1 and PB2. Those have their pull-up resistors set 
by software and throw PCINT interrupts to be served. After a key has been pressed, fur-
ther PCINT interrupts are blocked for a dead-time of 100 milli-seconds, so that no spuri-
ous signals can confuse the software. 

All external components are plugged in via a 10-pin box connector, for which the pinning 
is given in the lower right. 

To program the ATmega324PA within the system, a standard ISP6 connector has been 
added. This is not necessary in the final device, but eases program changes.

9.3 Mounting the alarm clock
TBD 

9.4 Software for the alarm clock

9.4.1 Download of the complete final software

TBD

9.4.2 Software for hardware testing

TBD 

9.4.2.1 Testing the crystal clock and the ISP interface

TBD 

9.4.2.2 Installation and testing of the LCD

TBD 
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9.4.2.3 Testing the LEDs

TBD 

9.4.2.4 Testing the AFC and AGC signal 
generation

TBD 

9.4.2.5 Testing the keys

TBD 

9.4.2.6 Testing the speaker

TBD 

9.4.2.7 Testing the RF/IF rectifier

TBD 

9.4.2.8 Testing the ambient light sensor

TBD 

9.4.2.9 Testing the potentiometer

TBD 

9.4.3 Software for the alarm clock

9.4.3.1 Date and time

The time that is independent from DCF77 syn-
chronization is derived from the system clock 
of 4.092 MHz by TC2. TC2 is prescaled by 256 
and the CTC mode in compare A divides the 
clock signal by 80. That delivers a signal of f 
= 4.096 MHz / 256 / 80 = 200 Hz. The regis-
ter rSecDiv counts from 200 down to zero. If 
that reaches zero, the time and date has to be 
advanced by one second.

Time and date  is  completely  located at  the 
beginning of the SRAM. Time and dates are 
stored in binary form, each component in one 
byte, in a total of seven bytes. These bytes 
are overwritten when DCF77 received a cor-
rect and complete time/date set. 

This  is  the  flow  that  increases  the  current 
time and date by one second. The algorithm 
to the left does the increase to the date and 
time components, the algorithm to the right 
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updates all  changed digits on the LCD. All  software flow drawings are available in the 
LibreOffice draw file here.

Most of the increases are straight forward and simple. Only the calculation of the days of 
the current month is a little bit more complex, thanks to a pope around the year 1500. 

Realization uses the pointer register pair X (R27:R26) that is increased each time the next 
time/date component is reached. 

The display of the components on the LCD starts with setting the cursor to the line and 
column where the component is located. All components, excluding the day abbreviation, 
are displayed by calling the routine LcdDec2, that is part of the include routine for LCD op-
eration lcd.inc. 

9.4.3.2 DCF77 analysis

TBD 
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9.4.3.3 LCD operation

TBD 

9.4.3.4 Adjusting date, time and 
alarm time with the keys

TBD

If the user adjusts the date, we can 
ease that by calculating the weekday 
from the adjusted date, so that the 
weekday is automatically correct. To 
the right you see the flow scheme of 
that calculation.

It is rather simple and based on the 
weekday on 01.01.2000, which was 
a  Saturday.  For  each  day  and  for 
each year since then (difference mi-
nus one) we add one to the result. 
The difference caused by the month 
are  a  little  more  complicated.  It  is 
held in a table in the flash memory. 
The difference to be added for each 
month (minus one) is read from that 
table. As the table is based on a non-
leap-year with 365 days, we have to 
add one for a leap year and for the 
months  above  February.  Finally  we 
have  to  add  the  number  of  leap 
years since 2000 to the current year 
(minus  one),  which  is  simply  the 
(year minus one) divided by four.

At the end we repeatedly subtract 7 
until  the  result  is  smaller  than  7 
(Modulo calculation).

Those who want to play around with 
the  calculation,  here  is  the  source 
code in asm format.

©2020 by http://www.avr-asm-tutorial.net 
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Path: Home => AVR overview => Applications => DCF77 receivers => Direct regulated OpAmp 
Applications of

AVR single chip controllers 
AT90S, ATtiny, ATmega and 

ATxmega
DCF77 direct 
receiver with 

regulated OpAmp
This project is experimental. I don't know if it 
really works as planned here. 

10 DCF77 AM direct receiver with gain-
regulated OpAmp and ATtiny25
DCF direct receivers need a regulated gain amplifier. The reasons for that are that 

1. the information in the DCF77 signal is encoded in the amplitude, so amplification 
must now be too high to avoid amplitude clipping, 

2. too high amplification leads to self-oscillation of the amplifier. At necessary gains of 
5,000 and higher this is an issue. 

This concept here uses 

• two operational amplifiers, that amplify the DCF77 signal, and 
• uses an FET/resistor divider to regulate its gain, and uses 
• an oscillation signal from an ATtiny25 to produce the negative voltage to increase 

the resistance between the Drain and the Source of the FET and so to reduce the 
gain of the OpAmp (AGC). 

The output of the ATtiny25 on the two pins 3 and 7 can be configured as follows: 

0. no signal, both pins remain low, or 
1. original  DCF77 signal on pin 3, inverted DCF77 signal on pin 7, no decoding or 

change in the signal, or 
2. decoded time and date transmitted over two synchronous output pins, or 
3. decoded time and date transmitted over an asynchronous output pin, if the respec-

tive Clear-To-Send pin is on. 

The constant cTxContent determines which content is transmitted in modes 2 or 3: 

0. nothing, or 
1. decoded time transmitted as serial ASCII each minute, in the format "T14:59" as 

derived from the decoded DCF77 signal, or 
2. decoded  time  and  date  as  serial  ASCII  each  minute,  in  the  format 

"T14:59D12/20/20WSu", or 
3. the latter, but additional receiver status and debugging info added as lines, which 

do not start with a T. 
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Conversion of the ME(S)T time to UTC can be configured within the software by setting 
cUtc to one.

 
This receiver here therefore is a versatile piece of equipment: you can use it as a simple 
DCF77 receiver that produces a High/Low signal  to be decoded with another piece of 
equipment, you can attach a simple display with a LCD to it and you can display DCF77 
date and time information via a terminal program on a PC or Laptop. What ever your 
needs are, the software is designed to fit these all. 

To display the results you can use the RS232 and your PC or laptop or 

1. a sync receiver with an ATtiny24 and an LCD here, or 
2. an async receiver with an ATmega48 and an LCD here, or 
3. an async receiver with an ATmega324 and a muxed 4-digit 7-segment LED here. 

All drawings are available as Libre-Office-Draw file here.

10.1 Hardware of the regulated OpAmp receiver

10.1.1 Receiver hardware schematic

This is all you need: 

• The ferrite antenna is brought to resonance with a fixed C and three varactor diodes 
in parallel to adjust the resonance, if you do not need that part you can replace the 
three varactors, the whole RC network from OC0A of the ATtiny25 and the capaci-
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tors on the cathodes of the varactors. And you can possibly add a trim capacitor to 
do the resonance trimming manually. 

• As I do not like the ferrite circuit to be on a different voltage than 0 Volt, and as the 
CA3140 does not really work as amplifier with its positive input at 0 V (only if you 
shift the offset voltage on Pins 1 and 5 with a 4k7 trim potentiometer widely to one 
side - which is not really a stable operation) I decided 

1. to divide the amplification load into two portions: one does a pre-amplifica-
tion by 100, the second stage by 1,000, 

2. to operate both OpAmps at half the operating voltage (+2.5 V), 
and to couple the ferrite LC circuit with a capacitor onto the medium voltage. That 
meant to add a FET driver stage that provides a low resistance signal. 

• In the first  stage the direct amplification is  done with the operational  amplifier 
CA3140. Do not use a 741 instead, it does not work properly with a single 5V sup-
ply. Gain is fixed at 100 by the two resistors. 

• Before the signal enters the second stage, a FET driven voltage divider reduces the 
signal gain. The FET's gate can have between 0 and -4.5V, the 100k is the upper 
half of the voltage divider. On start-up and with small negative voltages the signal 
gain is very small. 

• The remaining signal behind the FET attenuator is then fed into a second OpAmp. If 
you don't need the gain of 1,000, because your DCF77 signal strength is already 
large enough,  you can either  skip this  second  OpAmp (within  the  near-field  of 
DCF77) or you can reduce its gain by increasing the 1k resistor to 10k or 100k. 

The analog signal then is transferred to the controller's ADC3 input pin (see below). 

10.1.2 How the antenna circuit works

The 1 mH ferrite coil has been made from a 10-cm ferrite rod, which was covered over its 
hole length with two to three layers of adhesive tape, on which a coil with 0.25 mm cop-
per wire was twisted. To find out how many windings would be necessary for 1 mH I 
stopped at 100, 130 and 160 windings and measured the inductivity. With these values I 

determined the specific inductivity per winding2 AL. These values are shown in the table. 

Windings Inductivity [mH] AL [nH per w2]

100 0.40 39.72

130 0.75 44.56

160 1.05 40.88

The AL value, therefore, is roughly 41 nH/winding2. For a 2 mH coil roughly 220 windings 
would have been necessary.
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Ohm's resistance of the 160 windings is 5.6 Ω, inductive resistance at 77.5 kHz is 510 Ω. 
The C needed for  resonance  at  77.5 kHz  is  4.03 nF.  Preferred Styroflex capacitors  of 
3.3 nF are in the market, so with the three varactor diodes at 243 pF the resonance can 
be reached. A 3.9 Styroflex would also be fine, but the varactors would then be very small 
in capacity. You can even use any different capacitors besides Styroflex, because the ca-
pacity is regulated anyway so that accuracy and long-term reliability play no roll anyway. 

The LC circuit's resistance, when L and C are in resonance at 77.5 kHz, is around 50 kΩ or 
higher. So usual transistors or PNP/NPN OpAmp entry stages are not recommendable, the 
OpAmp should have a FET on the input. 

10.1.3 How the regulated OpAmp works

In  the  original  de-
sign displayed here I 
tried  to  replace  the 
resistor R1 in a lin-
ear  amplifier  stage 
with a FET. Its gate 
voltage can be var-
ied  between  zero 
and  minus  4.6 V. 
That  varies  the  re-
sistance  of  the 

Drain-to-Source pins of the FET between some 100 Ω and up to more than 1 MΩ. 

This  shows  the  variation  of 
RDSon  of  the  three  BF245 
FETs.  The  curve  starts  at 
roughly 200 Ω (for a BF245A) 
or less and, with rising nega-
tive voltages on the gate pin, 
rises  to  more  than  100 kΩ. 
The  BF245C  needs  higher 
negative voltages than the A 
or  B type for  the  same RD-
Son. 

This  type  of  diagram  is  not 
available for other JFETs. Usu-
ally only IDSS is listed, which 
is  the  current  through  the 
Drain-Source,  with  the  gate 
at 0 V and at a certain volt-
age  (mostly  15 V)  on  the 
drain. This is useful for calcu-
lating RDSon at 0 Volt, but yields too high and unrealistic resistances (the 15 V are unre-
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alistic). Therefore I have measured a BF246B by adding a resistor on the drain and mea-
suring the drain's voltage at different gate voltages. The diagram shows for the limited 
number of measurements that the current through the drain yields realistic RDSon values 
(in red) and that the calculated OpAmp gain is between one and 100,000.

Unfortunately,  the 
CA3140 does not re-
ally work as an am-
plifier with the posi-
tive  input  pin  on 
ground.  Only  if  you 
un-balance  the  bias 
voltage  with  a  4k7 
trim  potentiometer 
on  pins  1  and  5 
(with  the  middle  of 
the potentiometer on 
Ground) very widely 
to one side, the am-
plification starts. The 
trim range over which the CA3140 then amplifies is very narrow. If you leave this range, 
the CA3140 starts swinging wildly. The range where it works is depending from the gain 
and even reacts on the varactor diodes of the attached LC circuit. Nothing you can rely on 
without running into serious trouble.

I had to change the concept. After trying out different solutions, the schematic shown 
above has yielded a reliable amplifier. If you reduce the capacitors, e. g. down to 1 nF too 
much noise and instability is the consequence. Which is to be expected with a high ampli-
fication rate of 100,000, because already 10 µV noise already make up 1 V if amplified by 
100,000. The positive side is that the FET-decoupled LC circuit, adjusted to DCF77, hasn't 
reacted on my energy saving lamp,  that  produces lots  of  noise near 77.5 kHz (which 
causes usual commercial receivers to malfunction). 

A gain of 100,000 means that 10 µV HF are amplified to 1 V on the output. This amplifica-
tion is high enough in the near-field and in some distance to DCF77. 

As you can see from the diagram of the RDSon of the BF256 the amplification is steeply 
rising/falling in the middle of the curve. That means that already small change of the neg-
ative base voltage of the FET lead to the signal being too small or too large. By adjusting 
the gain of the two OpAmp stages, you can change the regulating voltage to get to the 
less steep sides of  the diagram. Just change the resistors  from the negative input to 
ground, e. g. to 1 or 10 or 100 kΩ. As both stages do not invert the input signal, even an 
amplification of 1,000 does not lead to back-feed and wild swinging. 

10.1.4 Serial receivers for display

The serial signals that are produced by the ATtiny25 are invisible. Only if you add addi-
tional hardware, you can display that. Those who don't want to use a PC or Laptop and 
their terminal program have the following opportunities to see what is going on: 
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1. a receiver for sync serial signals with an ATtiny24 and an attached LCD module 
here, or 

2. a receiver for async serial signals with an ATmega48 and an LCD here, or 
3. a receiver for async serial signals with an ATmega324 and a very large 7-segment 

LED display for displaying the received time here. 

Anyone can find its appropriate solution from that, the tn25 delivers all you need to have. 

10.2 Hardware of the ATtiny25 controller
Control and regulation as 
well  as  analyzing  the 
DCF77 signals is the task 
of an 8-pin ATtiny25. You 
can also use an ATtiny45 
or  85,  if  you  want  to 
waste  unused  flash  and 
EEPROM memory space.

The  following  functions 
are implemented: 

1. measuring  the 
amplitude  of  the 
DCF77  signal  on 
pin ADC3 (pin 2), 

2. generating the AFC control voltage on the OC0B output pin (pin 6), and 
3. generating and outputting the desired results via pin 3 (either the original DCF77 

amplitude state, the data for sync serial transmission or the TXD signal for async 
transmission) and pin 7 (either the inverted DCF signal, the Clock signal for serial 
sync or the CTS input for async serial signals). 

These hardware functions are described nearer in the following chapters.

10.2.1 Measuring the DCF77 signal

The ATtiny25 measures continuously the maximum amplitude value of the OpAmp's out-
put on his ADC3 input. As the signal swings around the medium voltage of 2.5 V, these 
values are rectified mathematically, so that even unsymmetrical signals can be measured 
correct.  

The software then determines two values from 256 of such measurements: 

1. the maximum amplitude value (above or below the average), and 
2. the average of the signal. 

The second value should be around +2.5V (8-bit-ADC value = 128) and serves only for 
the mathematical rectification of the signal.

The first value controls the AGC: if this value is higher than the pre-selected value of 2.0V 
(positive = 4.5V, negative = 0.5V, ADC between 230 and 25), the AGC voltage generator 
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is switched off. This decreases slowly the Gate voltage of the FET and the amplitude gets 
smaller.

The further treatment of the measured maximum values is described in the software sec-
tion.

10.2.2 Generating and filtering the AFC voltage

The  OC0A-PWM  generates  a  pulse-
width-modulated 8-bit-rectangle, which 
is  filtered with  a  three-stage  RC net-
work.  The  output  controls  the  three 

varicaps on the LC circuit. 

The three stages are 
necessary to remove 
PWM noise from that 
signal.  In  the  first 
stage  there  are  still 
420 mV  ripple  (see 
calculation  sheet 
opampreg_OC0A in 
the  Libre-Office  Calc 
file here). In the sec-
ond  stage  this  goes 
down  to  19 mV,  in 
the  final  stage  to 
3.6 mV.  This  ripple 
varies  the  LC  input 
stage by roughly 7.2 Hz, small enough for operating the LC stage and below the 256-stage 
resolution of the PWM (40 Hz per digit). 

The  very  good  filter 
properties of the RC 
have an adverse ef-
fect: it  delays adop-
tion to changed PWM 
values.  The  delay 
when  changing  the 
PWM value by 8 lasts 
roughly  2  seconds, 
as shown in this dia-
gram. Changes by 8 
occur  at  start-up 
when  the  AFC  is 
scanned  to  find  the 
first approach to the optimum value. That means that the software has to wait for two 
seconds until the changed voltage has settled.
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Scanning  is  per-
formed at the begin-
ning.  The  OCR0A 
value  is  set  to  255 
and is reduced by 8 
in  28  stages.  After 
the  delay  the  maxi-
mum and its average 
is  measured for  256 
times  (=65,536 
measurements,  2.3 
seconds  long).  The 
difference  between 
the maximum and its 
average helps to identify whether the input signal at this frequency is a steady-amplitude 
transmitter or is DCF77. This because the low-amplitude phases of DCF77 reduce the av-
erage, and in 2.3 seconds at least one amplitude reduction takes place. This is simulated 
in the following diagram over 80 seconds long. The OCR0A value at the maximum differ-
ence between maximum and its average is finally selected as start value for the AFC and 
written to the OCR0A portregister.

As each scan value is settling over 2.3 seconds and then measured over 2.3 seconds, the 
whole scan phase lasts 129 seconds or two minutes long. 

The further adjustment of the AFC is performed during normal operation. Here, the OCR0A 
values are varied by +/-1. More about the scan phase and AFC adjustment during opera-
tion can be found in the software section. 

10.2.3 Generation and filtering of the AGC voltage

The generation of the negative 
control voltage for the gate of 
the FET (AGC) is  done with a 
coil,  two  capacitors  of  470 nF 
and two Germanium-Diodes. If 
OC0B  produces  a  rectangle, 

this generator delivers -4.6 V, if permanently on. This is enough for all types of FET (A to 
C types). Driving the OCR0B-PWM output with other OC0B compare values than 0x7F has 
nearly no effect, the control voltage has to be regulated by switching the output pin OC0B 
off and on, the long time constant of 10 MΩ * 470 µF is long enough to not change control 
voltages too fast, e. g. when DCF77 is reducing its amplitude to transmit a zero (100 ms) 
or a one (200 ms), and to smooth the signal during pump phases (when full, the AC on 
that 470 µF capacitor is at less than 1 mV).

If the generator is off, the capacitor unloads via the resistor. This increases the negative 
gate voltage to more positive values, RDSon of the FET gets smaller, the divider between 
the OpAmp stages lets less amplitude through to the second OpAmp and so reduces the 
overall gain. 
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At  start-up,  the  ca-
pacitor  is  unloaded 
and  RDSon  has  its 
lowest value. So, on 
start-up  no  input 
signal  in the second 
stage  is  present. 
Only after the OC0B-
generator  has  pro-
duced  enough  load, 
the  second  stage 
starts  amplifying. 
Loading  ends  when 
the  maximum  al-
lowed amplitude has been reached. 

During normal operation, if  the long-term amplitude maximum falls below a minimum 
value, the generator is again switched on. As the 2.3-second average always includes one 
or two amplitude drops, the generator does not react on short-term drops. 

On more details on the algorithm that controls the AGC voltage see the software section 
below. 

10.2.4 Output of results

The two pins PB2 and PB4 produce the output signal, depending from the selections in the 
source code: 

0. If the constant cTxMode is zero, both output pins are permanently low. 
1. If  the  simplest  method  1  is  selected,  pin  3  (Data)  follows  the  DCF77's  signal 

strength: normally high, when a zero or one is transmitted it goes low. Note that 
for recognizing a low at least three maximum values below the long-term maximum 
average is necessary, so that a delay of 30 ms occurs. For those who need an in-
verted signal: just use the output pin 7 (Clock/TXD) or set constant  cRevert to 
one. 

2. If serial synchronous output is selected with bTxMode = 2, data and messages are 
send over the two pins. The bits of the character stream are placed on the DATA pin 
3, starting with bit 0, the CLOCK pin 7 is activated for one third of the time per bit  
(baud rate) and after another third the next bit is placed on the DATA pin. All con-
tent is send as ASCII characters. The baud rate can be adjusted by the constant 
cBaud (in Baud or bit per second).

The scheme shows transmission of a 0xAA byte with 10  kBd. The three phases al-
low the receiver to prepare and perform its actions. Each eight bits form one char-
acter, all bits are send without additional pauses in between. The end of a transmit-
ted line is finalized with a carriage return and a line feed character. 
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3. In mode 3 all results and messages are send in asynchronous mode, with a start bit 
and two stop bits (1N8), over the DATA/TXD pin: 

This shows such a transmis-
sion over a RS232 line, with a 
baud  rate  of  9k6.  The  +/- 
12V level over the RS232 line 
can  be  seen.  Such  a  level 
converter  looks  like  this.  

Only  the  CTS  signal  of  the 
RS232 is  used: it  has to  be 
activated  to  allow  transmis-
sion. Baud rates are adjusted 
with  the  cBaud constant, 
cRevert = 1 inverts both sig-
nals. Lines are finalized with 
CR and LF again. 

The selection of what shall be trans-
mitted can be adjusted in  cTxCon-
tent: 

0. Zero transmits nothing. 
1. One transmits the time in the format "Thh:mm:ss", preceeded by a T. It follows a 

M for Mid-European-Time, a  S for Mid-European-Summer-Time or a  U for UTC. A 
CR+LF follows. 

2. Two transmits the time, preceeded by T, then M/S/U for the time format, then a D 
for the following date. If cEN in the ATtiny25 is one, the date is send as "MM/DD/
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YY", if zero as "DD.MM.YY". Then a W and the two characters of the weekday fol-
low, finalized by CR+LF. 

3. Three additionally sends relevant messages on the status of the controller such as 
the adjusted AFC-PWM value as "F = 123" and the state of the AGC generator as "G 
= On/Off" and so-called E numbers with DCF77 time/date conversion errors, as well 
as time and date in the long format like above. 

10.3 The software

10.3.1 Software download

The software is still under construction. $$To be done$$ 

10.3.2 Software overview

The software has to do the following: 

1. The DCF signal that comes in from the ADC3 input pin has to be converted to a dig-
ital value, has to be rectified (as positive distance from the averaged mean value) 
and from that 

• the maximum of 256 measurements of the amplitude has to be identified, 
and 

• the average of those 256 measurements has to be calculated. 
This is all done within the interrupt service routine. To speed things up, only the 8 
most significant bits are read from the ADC and averaging sums up those raw val-
ues in a 16-bit register pair. After 256 measurements (roughly 7.3 ms) the MSB of 
the sum is copied to the register  rAvg. This value is only used to determine the 
rectifier's mid value, to be subtracted from. If subtraction of the average from the 
ADC raw result sets the carry flag, the value is complemented (subtracted from 
zero). This value is then compared with the previous maximum in rMaxM and, if 
larger  or  equal,  replaces  this  maximum.  After  256  measurements  the  value  is 
copied to rMax and the bAdc flag is set. Further processing is outside the interrupt 
service routine. 

2. Outside the ISR it is checked whether the AGC generator is currently on (bGain = 
0). If this is the case and if the rMax value is equal or above the selected value in 
cMaxLevel (2 Vrectified = 4 Vpp) the AGC generator is switched off, the flag bGain 
is set and the long-term averaging of the maximum is restarted. 

3. If not currently charging the AGC, the long-term maximum is calculated by sum-
ming up 256 maximum values. The MSB of this sum is written to rLTMax. If this 
value is smaller than the minimum level in cMinLevel (0.5 V) the AGC generator is 
switched on again and the flag bGain is cleared. 

4. If not, the DCF77 signal recognition is performed as follows: 
• If the previous amplitude was high (flag  bHigh = 1) and if the short-term 

maximum is smaller than the long-term average maximum, a cycle counter 
is decreased (from three down to to zero). If that is the case, the amplitude 
has changed to low. In that case bHigh is cleared and the cycle counter is 
checked whether the high phase counter is within the bounds of a minute 
change. If so, a minute change is performed. 
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• If the previous amplitude was low (flag  bHigh = 0), the same mechanism 
takes place. If this phase ends, with the three-counter reaching zero, it is 
checked whether the previos low-phase was in the range of a zero or a one. 

5. If output options are enabled, the respective outputs have to be written to the out-
put buffer and buffer transmission is started. These parts are only assembled if so 
enabled. 

To adjust the AFC voltage, 

1. a scan at the beginning finds the raw area, where DCF77 transmits, and
2. during the decoding running, the PWR is running with one digit lower and one digit 

higher values, which allows a fine identification. 

The  scan  works  as 
follows. It starts with 
the  highest  possible 
voltage that TC0 can 
produce  (OCR0A  at 
255  respective  +5V, 
lowest  capacity  of 
the  varactors,  high-
est frequency of the 
LC)- After waiting for 
2.3  seconds  to  ac-
commodate  the  RC 
network  to  the  new 
value, the 256 max-
ima are measured, for which the maximum and the average are calculated. If the differ-
ence between the maximum and its average is higher, this value is saved. Then the value 
of the PWM is decreased and the same procedure is repeated. If the PWM value reaches 
its minimum (by default 39), the scan ends and the OCR0A value at the detected maxi-
mum is written to OCR0A.

See below for a flow diagram of this scan. 

When running normal, the PWM value is varied with -/+ 1 digit and the same difference is 
used to re-adjust the AFC to one of the values -1, 0 or +1. 
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10.3.3 The AD conversion of the 
input signal

The AD converter runs in free auto-start 
mode, which means: it  restarts the AD 
whenever the previous result  has been 
read. As the ADC has to detect the maxi-
mum  of  the  77.5 kHz  DCF77  wave,  it 
runs nearly as fast as possible (2 MHz 
controller  clock,  AD prescaler  =  4,  AD 
frequency roughly 35 kHz).  So it  mea-
sures approximately one value per two 
sine  waves  on  the  input.  An  analysis 
shows that this is sufficient and does not 
produce too much erronous values. Re-
sult fetch, maximum detection and aver-
age calculation is  performed within the 
ISR of the ADC.

The  timing  is  shown in  the  calculation 
sheet DCF77clocking of the Libre-Office 
file  here,  with  the  parameters  in  the 
sheet  opampreg_ADC.  The  sheet 
opampreg_maxdetection simulates 
the maximum detection over 256 mea-
surements. As the ADC is restarted only 
after the previous result has been read, 
the  effective  number  of  conversion  cy-
cles  is  14.25.  Sampling  256  measure-
ments lasts roughly 7,3 ms. 

To  avoid  lengthy  division  routines,  the 
average  calculation  over  256  measure-
ments is held as simple as possible. Be-
cause  only  8-bit  values  are  relevant 
here, the  ADLAR bit of the ADC is set 
and only the high byte of the result is 
read. 

The detection of the maximum and the 
calculation  of  the  average  are  done 
within the interrupt service routine. This 
needs between 27 and 32 clock cycles 
for that. If the controller would be at its 
default 1 MHz clock and the AD prescaler 
would be two, one measurement would 
last  28  controller  clock  cycles.  That 
means that there is  no time left to do 
something else, e. g. for transmitting or calculating long-term averages, but to collect AD 
values and restart the ADC. Therefore the default clock of the ATtiny25 of 1 MHz is in-
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creased to 2 MHz, for which the clock prescaler CLKPR is set to four at the beginning. At 
2 MHz clock the controller provides enough spare time for the 27 to 32 clock cycles of the 
ISR as well as for other purposes such as transmitting.

10.3.4 OC0A and OC0B adjustment: The AFC scan at start-up

This flow diagram shows the scan phase, that starts after beginning and that is performed 
outside the ISR. The ISR of TC0 initiates this every 10 ms by setting its flag bit, if its 
down-counter reaches zero.

At start-up the 470 µF capacitor is not loaded and starts loading. In this phase it is only 
checked if the maximum is below the threshold level. If this is the case, nothing else hap-
pens. If the threshold has been reached, the bGain bit is set, the generator is switched 
off, the averages are restarted and normal processing can begin. 

By summing up 256 short-term measurements of the maximum an average of the maxi-
mum over  2.3 seconds  is  calculated.  If  those  256  measurements  are  available,  it  is 
checked whether the maximum are below the selected min level. If that is the case, the 
generator is restarted again and bGain is cleared. 

If the 256 values have enough amplitude, the MSB of the maximum and the MSB of the 
sum is stored in the long-term registers for further use. 

At start-up the raw adjustment of the frequency has to be performed. During this time, 
the bScan bit is clear. Scanning starts with 255 in the OCR0A port. 

This phase is necessary because there could be other transmitters within the LC reception 
band: 

1. At first: the tenth harmonic of the TC0-PWM, that produces the AFC voltage and 
that generates the AGC voltage from time-to-time is at 78.12 kHz and not very far 
from DCF77. So better not waste space and place the antenna circuit as far away 
from the ATtiny25 and the PWM components as possible. Anyway, this does not 
produce an amplitude-modulated signal but a steady noise. 

2. Here at my location south of Frankfurt a strong signal on 80 kHz is seen, for which I 
do not know where it is coming from. 

3. My energy saving lamp transmits constantly near 70 kHz. 

It is insufficient to measure only the maximum of the received waves, because you would 
be stuck to these constant-carrier-signals instead of DCF77. So it is the second-pulses that 
are the relevant detection criteria for DCF signals. Only the signals where the maximum is 
by 10 or 20% larger than the average maximum promise to the DCF77 carrier. 

As long as the scan is active a bWait bit = 0 lets the scan continue for another 2.3 sec-
onds. Only if this bit has become one, the value is read and compared with the previous 
ones. Each of the 28 measurements in the scan phase is evaluated for this difference, the 
maximum difference and its associated OCR0A value are stored. 

In each scan step the OCR0A value is decreased by 8 until it becomes smaller than 39 
(AFC = 0.76 V). If that is reached, the scan ends and the optimal OCR0A value is written 
to OCR0A. 
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10.3.5 The AFC in normal 
operation

After absolving the raw scan, the following 
algorithm adjusts the AFC voltage. 

1. The long-term difference between the 
long-term maximum minus the aver-
age  maximum  is  calculated  and 
stored in SRAM (measurement 1). 

2. The  current  OCR0A  value  is  de-
creased by one and, after a wait pe-
riod, the long-term difference is mea-
sured  and  registered  (measurement 
2). 

3. Then the OCR0A value is increased by 
two and the same procedure is per-
formed (measurement 3). 

The maximum of the three stored values is 
selected as next approach. 

10.4 Analysis of the DCF77 signals

This is the flow diagram of the DCF77 signal 
analysis. Displayed here is solely the recog-
nition  of  zeros,  ones  and  the  minute 
changes.

It  starts  with halving  the  long-term maxi-
mum, this value is used to determine zeros 
and  ones  and  high-amplitude  phases.  The 
duration  counter  rDcfCnt is  increased  by 
one.

Further  processing  depends  from  whether 
we  are  in  a  high  phase  of  the  amplitude 
(bHi =  1)  or  not.  If  in  a  low  amplitude 
phase  (left  part  of  the  diagram),  it  is 
checked whether the short-term maximum 
is still lower than halve the long-term maxi-
mum. If that is the case, the counter rCnt is 
restarted at three. 
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If not, the counter rCnt is decreased. If that reaches zero (after three consecutive highs), 
the direction bit  bHi is set and the duration of the low phase is checked if it is within a 
zero or one range. If it is not in these two ranges (too short, between a zero and a one, 
longer than a one), an error is generated and processed (with output, if so configured). 

Correct zeros and ones are written to the carry flag C and are shifted into the eight DCF 
bit storages in the SRAM (sDcfBitsN). The number of received bits is increased, if 59 is ex-
ceeded another error results. 

During a high phase (right side of the diagram) the same recognition of a level change 
takes place. If so, the duration is compared with the range of a minute change (1800 ms - 
tolerance to 1900 ms plus tolerance plus one). If the duration was shorter than a minute 
change, it is checked whether the signal was between 800 ms - tolerance and 900 ms plus 
tolerance plus one. These signals appear between single bits and are ok (no error mes-
sage triggered). 

If a minute change has occurred, it is checked whether exactly 59 bits had been regis-
tered. Then it is checked whether 
the parity bits for hours, minutes 
and dates  are  correct.  If  that  is 
also  the  case,  the  DCF  bits  are 
converted  to  time  and  date  in 
ASCII  (see next  chapter)  and,  if 
so  configured,  converted  to  UTC 
(see  overnext  chapter).  If  the 
time  and  date  are  completed, 
those are send over the serial in-
terface, if so configured. 

10.4.1 Conversion of the 
DCF77 data bits to time/date

This is the location of all 59 bits 
that  result  from  right-shifting  of 
all bits in SRAM.

The following remarks to that: 

• The  59th  bit  (Parity  date) 
includes all  date bits  alto-
gether,  the  parity  bits  for 
hours  and for  minutes  in-
clude only these bits. 
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• Information, that is completely inside a byte, such as the year-tens, can be copied 
and shifted right (in this case three times), the upper bits be cleared with an ANDI 
on the lower bits (in this case 0x0F), and an ASCII-Zero added to yield the decimal 
digit. 

• Bits that span over more than one byte have to be copied and shifted left over 
Carry into the higher byte first. 

• The two bits 21 and 1 have to be one and zero, otherwise an error has happened. 
• The bits 19 to 17, that deal with the summer and winter time, are only needed for 

the UTC conversion. 

When  accessing  such 
very  long  records  of 
bytes the AVR's ability 
to access bytes, where 
Y  and  Z  point  to  the 
base,  with  a  distance 
and  with  LDD/STD  is 
very  helpful.  To  use 
this feature I grouped 
the  time/date  record 
as  follows  and  added 
distance values.

The  SRAM  table  is 
structured  systemati-
cally to optimize trans-
parency  and  under-
standably. 

The column Dist gives 
the  displacement  for 
accessing  the  byte 
with  LDD  r,Y/Z+d  or 
STD Y/Z+d, r. The for-
mulation  LD 
R16,Y+dStrT yields the 
content of the table on 
the position dStrT, if Y 
points to sDcf. 
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10.4.2 Checking the parity

This is the parity checking rountine's flow diagram. Normally, when 
hours and minutes parities are checked, the T flag is cleared on 
entry. The data byte, including its parity bit, is send into the rou-
tine and it ends with a cleared T flag, if the parity is fine. If you 
have to check further bytes, like in the date parity, rather call ParN 
which uses the previous state of the T flag instead. 

10.4.3 Conversion of the DCF77 
date and time to UTC

This  is  rather  lengthy  if  you  want  to 
convert time and date to UTC in a cor-
rect manner, so that the displayed date 
is  also  correct  when  the  day  already 
changed in ME(S)T time, but not yet in 
UTC time. That requires going back in the date, which is more 
or  less  complicated  on  the  1st  of  January,  where  anything 
changes, including the years. 

10.5 Serial transmission of results and status

Serial  sending uses TC1 as baud rate generator and for the 
whole timing of the transmission process. As the 8-bit TC1 in 
the ATtiny25 allows prescaler values between 1 and 16,384, a 
rather  accurate  timing  can  be  achieved.  Baud  rates  beyond 
50,000 get more rough, but who needs such high rates at all. 
The inaccuracy is listed in the symbol table that gavrasm as 
well  as avr_sim produce at the end of their  listing. The two 
constants  cBaudEff (effective  Baud  rate)  and  cBaudDiff in 
0,01% resolution can be see. The 9k6 async baud rate comes 
out with 9,615 Bd, which is by 0.16% too high. Such small dif-
ferences  are  insignificant  for  a  robust  RS232  interface.  

During operation a number of result (each minute) and status 
messages (each second) can come up. Those are written to a 
transmit buffer in SRAM, which spans from sBuf to sBufEnd. If 
the line is complete, carriage return and line feed characters 
are  added  as  well  as  an  ASCII-Null  to  end  transmission.  

If the buffer is ready to transmit, 

1. the pointer X points to the buffer start, 
2. in the synchronous case rTxCnt is set to two, 
3. a one is written to the bit counter  rTxBit to provoke a 

read-next-character from buffer, 
4. the flag bTx in the flag register rFlag is set, 
5. the TC1 counter TCNT1 is overwritten with zero, and 
6. the interrupt mask register bit OCIE1A of the counter is 

set, by that allowing interrupts from TC1. 
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The complete transmission is performed within the ISR, of which two versions are in the 
source code and enabled by the constant cTxMode: 

1. cTxMode=2 enables the sync mode, 
2. 3 enables the async mode. 

In both modes the constant b>cReverse = 1 inverts the polarity of both output pins.  

Because the async- and the sync mode work different, those are described in two sub-
chapters that follow. 

10.5.1 Serial transmission in sync mode

The flow diagram shows 
the  interrupt  execution 
of  the  TC1  Compare 
Match. The red numbers 
display  the  number  of 
clock cycles required. 

In sync mode the inter-
rupt occurs three times 
more  often  than  in 
async mode. The phase 
counter  rTxCnt decides 
what to do next. 1 and 
0  activate  and  deacti-
vate  the  CLOCK output 
pin. Phase 2 places the 
next  bit  onto  the DATA 
pin (lower part of the di-
agram) and decrements 
the  number  of  bits  to 
send  in  rTxBit.  If  that 
reaches  zero,  the  next 
ASCII  character  is  read 
from the buffer.  If  that 
is ASCII-Null, the trans-
mit  is  terminated  and 
the flag  bTx is  cleared 
as well as the interrupt 
flag of  TC1. If  not,  the 
bit is placed to the DATA 
pin.

All different execution rows need less than 32 clock cycles. Only in a few cases ADC inter-
rupts can be delayed, but only for short. Only in high baud rates beyond 60 kBd these 
cases block the complete interrupt scheme. Therefore the source code limits the sync 
baud rate to below 31 kBd. 
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If cTxContent selects the output of the short time format, the transmit routine needs, at 
10 kBd, roughly 8.8 ms for that. When long format is selected, these are 18 ms long. As 
both occur only once in a minute, those are no relevant occasions.

This shows the transmission of hexadecimal 0xAA (=1010.1010) over the data and clock-
Pins in sync mode. 
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10.5.2 Serial transmission in async mode

The  flow  diagram 
shows the interrupt ex-
ecution  in  async  tran-
mission mode.

In async mode each in-
terrupt  stands  for  one 
bit.  Per  8-bit-character 
one  start  bit  and  two 
stop  bits  are  added. 
Due  to  this  the  baud 
rate  is  8/11th  of  the 
character speed. 

The  interrupt  service 
routine  starts  with 
decrementing the num-
ber of bits in rTxBit. If 
this  reaches  zero,  the 
next  character  is  read 
from the SRAM buffer. 
If  that  is  ASCII-zero 
transmission  ends.  If 
not,  the  start  bit  is 
send (when cRevert = 
0 the start bit is high, if 
1 it is low). If the num-
ber of bits to be send is 
smaller than three stop 
bits  are  send.  On any 
other number of bits one further bit is shifted into carry and the TXD output is set or 
cleared. 

All  different flow pathes require at max. 27 clock cycles. The maximum baud rate, at 
which the transmit blocks any other activities, is 74.1 kBd. If the time for each bit is con-
sidered correct, the baud rate for a blockade is reached at 95 kBd. Therefore the baud 
rate in async mode is limited to 47 kBd in the source code. 

The minimum baud rate is below 45 Bd, low enough to start a DCF77 time service on 
short  wave  that  transmits  the  DCF77 time/date/weekday  via  a  Radio-Teletype  (RTTY) 
transmitter. 

At 9k6 the long format needs 25 ms, the short format 12,6 ms. 

The two simulation diagrams show the character 0xAA in async mode at 9k6, to the right 
the inverted signal how it can be fed into a MAX232. 
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10.6 Sync serial receiver and LCD display with ATtiny24
The direct receiver with a regulated OpAmp outputs a sync serial signal in a short or long 
format, if so configured. This receiver here receives this sync signal and displays the re-
ceived content on an LCD. With that, time, date, weekday as well as status messages 
from the receiver can be displayed, depending from the size of the attached LCD. 

10.6.1 Necessary hardware

The  necessary  hardware  is 
published  here with  a  de-
tailed description. It is pos-
sible to attach the following 
LCD types to it: 

• Single line, 8 charac-
ters:  In  the  OpAm-
pReg  software  select 
the  short  format,  no 
status messages, Dis-
play  of  the  time  as: 
00:00:00 

• Two lines, 16 charac-
ters:  In  the  OpAm-
pReg  software  select 
the  long  format  and 
short  status  mes-
sages, Display: Line 1 
=  00:00:00  U/M/S, 
Line 2 = 01.01.00 Wd E0 

• Four lines, 20 characters: In the OpAmpReg software select the long format and 
long status messages, make sure that cEN is equally defined in both softwares, Dis-
play: Line 1 = Time = 00:00:00 U/M/S, Line 2 = Date = 12/31/20 Wd, Line 3 = 
Long DCF error messages, Line 4 = Status messages 

To attach the OpAmp receiver to the tn24lcd board you need only a 6-pin parallel cable 
that fits into the 6-pin male plug on the tn24lcd board.

That  is  all.  Anything 
else  is  done  by  the 
software. 
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10.6.2 The software

The software is written in Assembler, of course. It requires the  LCD-Include-Routines to 
assemble correct. The following entries have to be changed to match with your hardware: 

;.equ clock = 1000000 ; Clock frequency of controller in Hz
; LCD size:
  .equ LcdLines = 1 ; Number of lines (1, 2, 4)
  .equ LcdCols = 8 ; Number of characters per line (8..24)
; LCD bus interface
  .equ LcdBits = 4 ; Bus size (4 or 8)
  ; If 4 bit bus:
    .equ Lcd4High = 1 ; Bus nibble (1=Upper, 0=Lower)
  .equ LcdWait = 0 ; Access mode (0 with busy, 1 with delay loops)
; LCD data ports
  .equ pLcdDO = PORTA ; Data output port
  .equ pLcdDD = DDRA ; Data direction port
; LCD control ports und pins
  .equ pLcdCEO = PORTB ; Control E output port
  .equ bLcdCEO = PORTB2 ; Control E output portpin
  .equ pLcdCED = DDRB ; Control E direction port
  .equ bLcdCED = DDB2 ; Control E direction portpin
  ;equ pLcdCRSO = PORTB ; Control RS output port
  .equ bLcdCRSO = PORTB0 ; Control RS output portpin
  .equ pLcdCRSD = DDRB ; Control RS direction port
  .equ bLcdCRSD = DDB0 ; Control RS direction portpin
; If LcdWait = 0:
  .equ pLcdDI = PINA ; Data input port
  .equ pLcdCRWO = PORTB ; Control RW output port
  .equ bLcdCRWO = PORTB1 ; Control RW output portpin
  .equ pLcdCRWD = DDRB ; Control RW direction port
  .equ bLcdCRWD = DDB1 ; Control RW direction portpin
; If you need binary to decimal conversion:
  ;.equ LcdDecimal = 1 ; If defined: include those routines
; If you need binary to hexadecimal conversion:
  ;.equ LcdHex = 1 ; If defined: include those routines
; If simulation in the SRAM is desired:
  ;.equ avr_sim = 1 ; 1=Simulate, 0 or undefined=Do not simulate

Further properties to be adjusted in the source code are: 

• cEN: 1 provides english display format, 
•

10.7 Async serial receiver and LCD display with ATmega48
The direct receiver with a regulated OpAmp outputs an async serial signal in a long for-
mat, if so desired. This receiver here reads this async signal and displays the received 
content on an LCD. With that, time, date, weekday as well as status messages from the 
receiver can be displayed, depending from the size of the attached LCD. 
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10.7.1 Necessary hardware

To  not  having  to 
write an async serial 
receiver  in  assem-
bler I chose an AVR 
that  already has  an 
integrated async re-
ceiver  on  board. 
Many  AVRs  have 
that, I chose an AT-
mega48  for  that.  If 
you  have  an  AT-
mega88,  you  can 
simply  replace  the 
m48  by  the  m88, 
just  change  the  in-
clude  header  in  the 
source code.

Those who want to clock their DCF77 seconds with an XTAL, cannot use this hardware. 
The ATmega48 has no complete 8-bit data bus for the LCD when enabling an external 
crystal, so I decided to skip the crystal here. That makes the watch malfunctioning with 
3% inaccuracy. If you want a crystal-driven device you can change to an ATmega324 like 
here or you'll have to drive the LCD with a four-bit data bus. 

The serial signals are received by the Mega48 on its RXD pin. Because the serial signal is 
directly attached and not inverted, choose cRevert = 0 in the source code software for 
the ATtiny25. This switches the TXD and CTS pins of the ATtiny25 to active high. After the 
ATmega48 has absolved its initialization, he turns PD1 on, switching Clear-To-Send back 
on the ATtiny25 on. 

The pins PD2 and PD3 are attached to two keys. Those are for adjusting the clock to cur-
rent time even without a valid DCF77 signal coming in. Pressing key1 starts the adjust-
ment of the hours with an INT0 signal, the correct hour can be selected with the poten-
tiometer that is attached to ADC0. If correct, press key2 (INT1) and the minutes are ad-
justed. Pressing Key2 again sets the time. 

The LCD is attached with its data bus to Port B, the three control inputs are on PD5 to 
PD7. You can attach any LCD of any size to it, just change the number of rows and col-
umns in the source code. Of course, the size of the LCD determines what is displayed.  

Calculation basics for this project are in the Libre-Office-Calc-File here. 

10.8 Async serial receiver and LED display with ATmega324
The direct receiver with a regulated OpAmp outputs an async serial signal in a long for-
mat, if so desired. This receiver here reads this async signal and displays the received 
content on an LCD. With that, time, date, weekday as well as status messages from the 
receiver can be displayed, depending from the size of the attached LCD. 
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10.8.1 The LED display of the clock

The display used here has been described here. It works with four decimal digits with 28 
pieces of 10mm-LEDs, that are organized in seven segments by four LEDs each. Each seg-
ment is attached to a constant current driver. In the middle between the four digits a dou-
ble point is located with two LEDs, altogether 114 LEDs. The original works with an AT-
mega48. 

10.8.2 Necessary hardware

To additionally enable adjustment of the watch via an async serial interface would have re-
sulted in large changes to the original  ATmega48 design, because the original  already 
used RXD for a different signal. So I had to change to another controller. 

After consulting the AVR selection window in  avr_sim I decided to try it with a 40-pin 
AT324PA, which is commercially available and cheap and has all that is needed for the 
large watch: 

• two crystal pins for clocking the controller with exact second pulses, so that the 
watch also works without DCF77, 

• an 8-bit-bus for multiplexing the seven segments and the double point, 
• a 4-bit-bus for driving the anodes of the 7-segment display, 
• two INT pins for the two keys, 
• two ADC channels for the potentiometer and the background light sensor, and 
• the UART input pin RXD0 and a single I/O pin for the CTS output. 

The schematic shows how all components are connected to the ATmega324. As a gimmick 
a red-green dual LED has been added that can display the state of the DCF77 receiver: 

• permanently green shows synchronization with DCF77, 

• permanently red signals missing synchronization with DCF77, 
• blinking red shows read errors on the async interface. 

Calculation basics are in the Libre-Office-Calc file here.
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